Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 135 results
Advanced filters: Author: Gavin A. Craig Clear advanced filters
  • Despite improving therapeutic options, the prognosis for patients with metastatic castration-resistance prostate cancer (mCRPC) remains poor. Here, the authors identify MCL1 copy number alterations as a prognostic and predictive biomarker, demonstrating its therapeutic potential as a drug target, either alone or in combination, in patients with mCRPC.

    • Juan M. Jiménez-Vacas
    • Daniel Westaby
    • Adam Sharp
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-22
  • It is important to know how the recent COVID-19 pandemic shaped the immune memory against the causal SARS-CoV-2 virus. Here authors show that long years following mild disease at primary infection, SARSCoV-2 spike-specific CD4 + T cells with distinct phenotypes and T cell receptor clonotypes, associated with viral suppression persist.

    • Guihai Liu
    • Elie Antoun
    • Tao Dong
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-17
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • A population of TRAIL-positive astrocytes in glioblastoma contributes to an immunosuppressive tumour microenvironment and this mechanism can be targeted with an engineered oncolytic virus to improve outcomes.

    • Camilo Faust Akl
    • Brian M. Andersen
    • Francisco J. Quintana
    Research
    Nature
    Volume: 643, P: 219-229
  • Acute febrile illness is common in sub-Saharan Africa and causative agents are often unknown. Here, the authors perform metagenomic sequencing on samples from patients with acute febrile illness in Uganda for which no diagnosis was available through routine diagnostic screening.

    • Shirin Ashraf
    • Hanna Jerome
    • Emma C. Thomson
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
    • GAVIN DE BEER
    Books & Arts
    Nature
    Volume: 206, P: 331-332
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Materials that demonstrate long-range magnetic order are synonymous with information storage. Here, the authors report the effect of pressure on two mononuclear rhenium compounds that exhibit long-range magnetic order under ambient conditions via a spin canting mechanism, whereTcis proportional to pressure.

    • Christopher H. Woodall
    • Gavin A. Craig
    • Euan K. Brechin
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • Multisystem inflammatory syndrome in children (MIS-C) onsets in COVID-19 patients with manifestations similar to Kawasaki disease (KD). Here the author probe the peripheral blood transcriptome of MIS-C patients to find signatures related to natural killer (NK) cell activation and CD8+ T cell exhaustion that are shared with KD patients.

    • Noam D. Beckmann
    • Phillip H. Comella
    • Alexander W. Charney
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-15
  • Accounting for near-surface temperature gradients leads to estimates for annual CO2 uptake in the North Atlantic that are 7% higher, based on a comparison of eddy covariance and bulk CO2 measurements, which is consistent with theory, laboratory assessments and model analysis.

    • Daniel J. Ford
    • Jamie D. Shutler
    • Ian Ashton
    ResearchOpen Access
    Nature Geoscience
    Volume: 17, P: 1135-1140
  • Understanding the genetic basis of cognitive traits could aid the development of numeracy and literacy skills in children. Here the authors show that reading and mathematics have a large overlapping genetic component and suggest that a child's learning environment has a key role in creating differences between them.

    • Oliver S. P. Davis
    • Gavin Band
    • Chris C. A. Spencer
    ResearchOpen Access
    Nature Communications
    Volume: 5, P: 1-6
  • The Omicron variant evades vaccine-induced neutralization but also fails to form syncytia, shows reduced replication in human lung cells and preferentially uses a TMPRSS2-independent cell entry pathway, which may contribute to enhanced replication in cells of the upper airway. Altered fusion and cell entry characteristics are linked to distinct regions of the Omicron spike protein.

    • Brian J. Willett
    • Joe Grove
    • Emma C. Thomson
    ResearchOpen Access
    Nature Microbiology
    Volume: 7, P: 1161-1179
  • COVID-19 can be associated with neurological complications. Here the authors show that markers of brain injury, but not immune markers, are elevated in the blood of patients with COVID-19 both early and months after SARS-CoV-2 infection, particularly in those with brain dysfunction or neurological diagnoses.

    • Benedict D. Michael
    • Cordelia Dunai
    • David K. Menon
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-15
  • Systemic genome-led vaccinology and a mouse model of Trypanosoma vivax infection identify protective invariant subunit vaccine antigens, and demonstrate the possibility of generating effective vaccines that induce long-lasting protection against trypanosome infections.

    • Delphine Autheman
    • Cécile Crosnier
    • Gavin J. Wright
    Research
    Nature
    Volume: 595, P: 96-100
  • This report from the 1000 Genomes Project describes the genomes of 1,092 individuals from 14 human populations, providing a resource for common and low-frequency variant analysis in individuals from diverse populations; hundreds of rare non-coding variants at conserved sites, such as motif-disrupting changes in transcription-factor-binding sites, can be found in each individual.

    • Gil A. McVean
    • David M. Altshuler (Co-Chair)
    • Gil A. McVean
    ResearchOpen Access
    Nature
    Volume: 491, P: 56-65
  • Understanding the immune response to SARS-CoV-2 is dependent on being able to distinguish COVID-19 immune responses from cross-reactive immune responses to other coronaviruses. Here the authors show that choice of antigens and whether an ICS, ELISPOT or T cell proliferation assay is used has a major effect on this discriminatory ability.

    • Ane Ogbe
    • Barbara Kronsteiner
    • Susanna Dunachie
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-14
  • Mixed responses to targeted therapy within a patient are a clinical challenge. Here the authors show that TP53 loss-of-function cooperates with whole genome doubling which increases chromosomal instability. This leads to greater cellular diversity and multiple routes of resistance, which in turn promotes mixed responses to treatment.

    • Sebastijan Hobor
    • Maise Al Bakir
    • Charles Swanton
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-21
  • Known genetic loci account for only a fraction of the genetic contribution to Alzheimer’s disease. Here, the authors have performed a large genome-wide meta-analysis comprising 409,435 individuals to discover 6 new loci and demonstrate the efficacy of an Alzheimer’s disease polygenic risk score.

    • Itziar de Rojas
    • Sonia Moreno-Grau
    • Agustín Ruiz
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-16
  • Porosity in metal–organic materials typically relies on highly ordered crystalline networks, which hinders material processing and morphological control. Here, the authors use metal–organic polyhedra as porous monomers in supramolecular polymerization to produce colloidal spheres and gels with intrinsic microporosity.

    • Arnau Carné-Sánchez
    • Gavin A. Craig
    • Shuhei Furukawa
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-8