Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 107 results
Advanced filters: Author: Hongxin Liu Clear advanced filters
  • Human cortical functions rely on intricate spatial arrangements and interactions among neuronal cell types. Here, authors show a comprehensive cellular atlas illustrating detailed neuron distribution and communication patterns across cortical regions.

    • Songren Wei
    • Meng Luo
    • Qinghua Jiang
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • Gastric Squamous Cell Carcinoma (GSCC) is a rare subtype of gastric cancer with unknown etiology. Here, the authors identify frequent mutations in epigenetic regulation genes including EZH2 in twenty GSCC patient samples, and demonstrate that EZH2 loss, along with TP53 and PTEN loss, leads to GSCC in mouse models.

    • Mengsha Zhang
    • Ailing Zhong
    • Chong Chen
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • The compact Cas12f enzyme exhibits obvious delivery advantage for gene editing, but its activity remains suboptimal. Here, the authors have designed and optimized circular guide RNA (cgRNA) for Cas12f, which significantly improves the efficiency of gene activation and adenine base editing.

    • Xin Zhang
    • Mengrao Li
    • Zhili Rong
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • The bacterial pathogen Legionella pneumophila secretes effectors that affect protein ubiquitination within host cells, involving production of phosphoribosyl ubiquitin (PR-Ub). Here, the authors identify additional effectors that convert PR-Ub back into functional ubiquitin, thus maintaining ubiquitin homeostasis in infected cells.

    • Jiaqi Fu
    • Siying Li
    • Zhao-Qing Luo
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • There are now several van der Waals magnets that have been shown to host skyrmions, however, these are typically hampered by a low Curie temperature, restricting the temperature at which the skyrmions can exist. Here, Zhang, Jiang, Jiang and coauthors find a skyrmion lattice in the van der Waals magnet Fe3 − xGaTe2 above room temperature and demonstrate the critical role of symmetry breaking in crystal lattice in the origin of these skyrmions.

    • Chenhui Zhang
    • Ze Jiang
    • Hyunsoo Yang
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-9
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • High-temperature fuel cells often face bulk cracking due to insufficient fracture strength and stiffness. Here, the authors show that chemical hydration enhances cathode mechanical properties, significantly improving thermal cycling stability and overall performance in proton ceramic fuel cells.

    • Hongxin Yang
    • Yuan Zhang
    • Heping Xie
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  •  In the Virgo galaxy cluster, we identified a continuum of objects that maps the morphological transition between nucleated dwarf galaxies and ultra-compact dwarf galaxies (UCDs), providing evidence for the formation of UCDs through tidal stripping of ancient dwarf galaxies.

    • Kaixiang Wang
    • Eric W. Peng
    • Mingcheng Zhu
    Research
    Nature
    Volume: 623, P: 296-300
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Persistent luminescence is a promising bioimaging technique that is not affected by background autofluorescence, but its in vivo application is challenged by the fact that the materials currently available are activated by high-energy light, with emission in the ultraviolet and visible spectral windows. In this paper the authors engineer X-ray activated, lanthanide-based nanoparticles with a tunable emission in the biologically relevant NIR-II spectral region, which allows high-contrast, multimodal in vivo deep-tissue organ imaging.

    • Peng Pei
    • Ying Chen
    • Fan Zhang
    Research
    Nature Nanotechnology
    Volume: 16, P: 1011-1018
  • Ceruloplasmin has an important role in the stabilization and nuclear transport of HIF-1α, thus regulating VEGF expression. Here the authors show that the transcription factor SARI reduces colorectal cancer growth and angiogenesis in vivoby inducing the degradation of ceruloplasmin, thereby inhibiting the HIFα/VEGF axis.

    • Lei Dai
    • Xueliang Cui
    • Hongxin Deng
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-15
  • Zhu et al. report a quantitative and time-resolved analysis of hydrogen activation on Ga2O3, specifically shedding light on the long-standing puzzle of homolytic dissociation as opposed to the heterolytic pathway on oxides.

    • Chengsheng Yang
    • Sicong Ma
    • Xinhe Bao
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-11
  • Synthetic antiferromagnets (SAF), formed out of alternating layers of a ferromagnet with neutral spacer combine technologically appealing properties of both antiferromagnets and ferromagnets. Here, Chen et al demonstrate controlled switching of an SAF, without the need for an applied magnetic field.

    • Ruyi Chen
    • Qirui Cui
    • Cheng Song
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-9
  • A study generates a clinicogenomics dataset resource, MSK-CHORD, that combines natural language processing-derived clinical annotations with patient medical data from various sources to improve models of cancer outcome.

    • Justin Jee
    • Christopher Fong
    • Xinran Bi
    ResearchOpen Access
    Nature
    Volume: 636, P: 728-736
  • Lanthanide downshifting nanoparticles with tunable emissions in the NIR-IIb sub-window (1,500–1,700 nm) region are ideal for deep-tissue imaging. Biofunctionalized core–shell, cubic-phase thulium-based nanoprobes show the non-invasive imaging of murine cerebral vasculature and the tracking of single immune cells and their extravasation in an inflammatory microenvironment.

    • Yiwei Yang
    • Ying Chen
    • Fan Zhang
    Research
    Nature Nanotechnology
    Volume: 18, P: 1195-1204
  • Conventional upconversion nanoparticles (UCNPs) cannot activate multiple neuron populations independently using optogenetics. Here the authors report trichromatic UCNPs with excitation-specific luminescence to allow activation of three distinct neuronal populations in the brain of awake mice.

    • Xuan Liu
    • Heming Chen
    • Fan Zhang
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-12
  • Using the moss Physcomitrium patens, the authors reveal that PpRopGAPs and PpRenGAP redundantly regulate tip growth by inactivating ROP GTPases and influencing their membrane organization. They display distinct GAP activities and binding capacities to ROPs and oppositely regulate cell width when overexpressed.

    • Jingtong Ruan
    • Linyu Lai
    • Peishan Yi
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-16
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • The Cancer Genome Atlas Research Network report integrated genomic and molecular analyses of 164 squamous cell carcinomas and adenocarcinomas of the oesophagus; they find genomic and molecular features that differentiate squamous and adenocarcinomas of the oesophagus, and strong similarities between oesophageal adenocarcinomas and the chromosomally unstable variant of gastric adenocarcinoma, suggesting that gastroesophageal adenocarcinoma is a single disease entity.

    • Jihun Kim
    • Reanne Bowlby
    • Jiashan Zhang
    ResearchOpen Access
    Nature
    Volume: 541, P: 169-175