Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 94 results
Advanced filters: Author: Janet Kang Clear advanced filters
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • A region on chromosome 19p13 is associated with the risk of developing ovarian and breast cancer. Here, the authors genotyped SNPs in this region in thousands of breast and ovarian cancer patients and identified SNPs associated with three genes, which were analysed with functional studies.

    • Kate Lawrenson
    • Siddhartha Kar
    • Simon A. Gayther
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-22
  • A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.

    • Vassily Trubetskoy
    • Antonio F. Pardiñas
    • Jim van Os
    Research
    Nature
    Volume: 604, P: 502-508
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Harnessing biomolecular systems to endow synthetic materials with life-like properties is a significant challenge. Here, the authors use the biomolecular KaiABC circadian clock proteins to control autonomous self-assembly and oscillation of colloids.

    • Gregor Leech
    • Lauren Melcher
    • Rae M. Robertson-Anderson
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Sirenians are aquatic mammals that originated in Africa ~60 million years ago. Using comparative genomics of a new dugong genome, this study finds genetic adaptations shared by extant sirenians and assessed the diversity of dugongs in Australian waters and the functionally extinct Okinawan dugong.

    • Ran Tian
    • Yaolei Zhang
    • Inge Seim
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-19
  • Previous studies identified an association between the 2q35 locus and breast cancer. Here, the authors show that a SNP at 2q35, rs4442975, is associated with oestrogen receptor positive disease and suggest that this effect is mediated through the downregulation of a known breast cancer gene, IGFBP5.

    • Maya Ghoussaini
    • Stacey L. Edwards
    • Anna De Fazio
    Research
    Nature Communications
    Volume: 5, P: 1-12
  • A diverse, multidisciplinary panel of 386 experts in COVID-19 response from 112 countries provides health and social policy actions to address inadequacies in the pandemic response and help to bring this public health threat to an end.

    • Jeffrey V. Lazarus
    • Diana Romero
    • Anne Øvrehus
    ResearchOpen Access
    Nature
    Volume: 611, P: 332-345
  • De Ravin et al. report an unplanned interim analysis of a secondary safety outcome for an ongoing clinical trial on lentiviral gene therapy for the treatment of X-linked Severe Combined Immunodeficiency (NCT01306019). Vector induced alternative splicing events are identified that cause aberrant fusion transcripts, leading to clonal dominance in a single patient and clonal expansion in others. This can be mitigated by the removal of the lentivector cryptic splice acceptor.

    • Suk See De Ravin
    • Siyuan Liu
    • Xiaolin Wu
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-15
  • Previous work has identified several genes where mutations lead to breast cancer, but other genetic and environmental factors must still be accounted for. A large study of genetic association with breast cancer points to four novel genes and many more genetic markers that should be pursued for their link to cancer susceptibility.

    • Douglas F. Easton
    • Karen A. Pooley
    • Bruce A. J. Ponder
    Research
    Nature
    Volume: 447, P: 1087-1093
  • Stig Bojesen, Georgia Chenevix-Trench, Alison Dunning and colleagues report common variants at the TERT-CLPTM1L locus associated with mean telomere length measured in whole blood. They also identify associations at this locus to breast or ovarian cancer susceptibility and report functional studies in breast and ovarian cancer tissue and cell lines.

    • Stig E Bojesen
    • Karen A Pooley
    • Alison M Dunning
    Research
    Nature Genetics
    Volume: 45, P: 371-384
  • Alison Dunning, Stacey Edwards and colleagues analyze 3,872 common variants across the ESR1 locus in 118,816 women. They find five independent variants within regulatory regions that associate with different breast cancer–related phenotypes and regulate the expression of ESR1, RMND1 and CCDC170.

    • Alison M Dunning
    • Kyriaki Michailidou
    • Stacey L Edwards
    Research
    Nature Genetics
    Volume: 48, P: 374-386
  • Primary immunodeficiency can predispose patients to mycobacterial disease. Casanova and colleagues identify novel human mutations in the enzyme SPPL2A that result in selective accumulation of CD74 in a dendritic cell subset and lead to their death and the failure to mount effective TH1 responses.

    • Xiao-Fei Kong
    • Ruben Martinez-Barricarte
    • Jean-Laurent Casanova
    Research
    Nature Immunology
    Volume: 19, P: 973-985
  • Vascular homeostasis in the lung is disturbed in pulmonary arterial hypertension. Jongmin Kim et al. delineate a new signaling axis controlling endothelial cell proliferation and cytokine production that is dysregulated in pulmonary endothelial cells from individuals with this disease. In this axis, the peptide apelin controls expression of the cytokine FGF2, a mitogen for endothelial and vascular smooth-muscle cells, through effects on two microRNAs. The authors also demonstrated the functional importance of these miRNAs in rat models of pulmonary hypertension.

    • Jongmin Kim
    • Yujung Kang
    • Hyung J Chun
    Research
    Nature Medicine
    Volume: 19, P: 74-82
  • Analysis of whole-genome sequencing data across 2,658 tumors spanning 38 cancer types shows that chromothripsis is pervasive, with a frequency of more than 50% in several cancer types, contributing to oncogene amplification, gene inactivation and cancer genome evolution.

    • Isidro Cortés-Ciriano
    • Jake June-Koo Lee
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 331-341
  • Analysis of mitochondrial genomes (mtDNA) by using whole-genome sequencing data from 2,658 cancer samples across 38 cancer types identifies hypermutated mtDNA cases, frequent somatic nuclear transfer of mtDNA and high variability of mtDNA copy number in many cancers.

    • Yuan Yuan
    • Young Seok Ju
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 342-352
  • Roger Milne and colleagues conduct a genome-wide association study for estrogen receptor (ER)-negative breast cancer combined with BRCA1 mutation carriers in a large cohort. They identify ten new risk variants and find high genetic correlation between breast cancer risk for BRCA1 mutation carriers and risk of ER-negative breast cancer in the general population.

    • Roger L Milne
    • Karoline B Kuchenbaecker
    • Jacques Simard
    Research
    Nature Genetics
    Volume: 49, P: 1767-1778
  • Association analysis identifies 65 new breast cancer risk loci, predicts target genes for known risk loci and demonstrates a strong overlap with somatic driver genes in breast tumours.

    • Kyriaki Michailidou
    • Sara Lindström
    • Douglas F. Easton
    Research
    Nature
    Volume: 551, P: 92-94
  • Germline mutation rate is a critical parameter in the study of genetics and evolution. Here, Carlson et al. infer fine-scale patterns of human mutation rate heterogeneity by analyzing ~36 million singleton variants from 3560 whole-genome sequences.

    • Jedidiah Carlson
    • Adam E. Locke
    • Stanley J. Watson
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-13