Turbulent rotating convection controls many observed features in stars and planets, such as magnetic fields. It has been argued that the influence of rotation on turbulent convection dynamics is governed by the ratio of the relevant global-scale forces: the Coriolis force and the buoyancy force. This paper presents results from laboratory and numerical experiments which exhibit transitions between rotationally dominated and non-rotating behaviour that are not determined by this global force balance. Instead, the transition is controlled by the relative thicknesses of the thermal (non-rotating) and Ekman (rotating) boundary layers.
- Eric M. King
- Stephan Stellmach
- Jonathan M. Aurnou