Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 299 results
Advanced filters: Author: Julia B. Lewis Clear advanced filters
  • A study of several longitudinal birth cohorts and cross-sectional cohorts finds only moderate overlap in genetic variants between autism that is diagnosed earlier and that diagnosed later, so they may represent aetiologically different conditions.

    • Xinhe Zhang
    • Jakob Grove
    • Varun Warrier
    ResearchOpen Access
    Nature
    P: 1-12
  • Photocatalysts that can engage a range of substrates and regulate reactivity and enantioselectivity are highly desirable. Now, an enantioselective energy transfer catalysis-enabled photocyclization of acrylanilides has been developed. Reactivity and enantioselectivity are simultaneously regulated by a commercial chiral Al–salen complex upon irradiation, enabling the formation of diverse cyclic products with high levels of enantioselectivity.

    • Julia Soika
    • Carina Onneken
    • Ryan Gilmour
    ResearchOpen Access
    Nature Chemistry
    Volume: 17, P: 1383-1390
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • Together with an accompanying paper presenting a transcriptomic atlas of the mouse lemur, interrogation of the atlas provides a rich body of data to support the use of the organism as a model for primate biology and health.

    • Camille Ezran
    • Shixuan Liu
    • Mark A. Krasnow
    ResearchOpen Access
    Nature
    Volume: 644, P: 185-196
  • Genome-wide analyses identify 30 independent loci associated with obsessive–compulsive disorder, highlighting genetic overlap with other psychiatric disorders and implicating putative effector genes and cell types contributing to its etiology.

    • Nora I. Strom
    • Zachary F. Gerring
    • Manuel Mattheisen
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1389-1401
  • Using data from a single time point, passenger-approximated clonal expansion rate (PACER) estimates the fitness of common driver mutations that lead to clonal haematopoiesis and identifies TCL1A activation as a mediator of clonal expansion.

    • Joshua S. Weinstock
    • Jayakrishnan Gopakumar
    • Siddhartha Jaiswal
    Research
    Nature
    Volume: 616, P: 755-763
  • A phase 1/2 trial of dual-vector rAAVrh8 gene therapy for GM2 gangliosidosis, administered by bilateral intrathalamic, cisterna magna and intrathecal delivery found a dose-dependent biochemical correction of the disease.

    • Florian Eichler
    • Oguz I. Cataltepe
    • Terence R. Flotte
    ResearchOpen Access
    Nature Medicine
    Volume: 31, P: 2927-2935
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Net heterolysis of symmetric and homopolar σ-bonds by stimulated doublet–doublet electron transfer is reported in a series of atypical SN1 reactions, in which selenides show SDET-induced nucleofugalities rivalling those of more electronegative halides or diazoniums.

    • Anna F. Tiefel
    • Daniel J. Grenda
    • Alexander Breder
    ResearchOpen Access
    Nature
    Volume: 632, P: 550-556
  • Irradiation of chiral Al-salen complexes with violet light demonstrates efficient deracemization of cyclopropanes, enabling reactivity and enantioselectivity to be regulated simultaneously, negating the requirement for tailored catalyst–substrate recognition motifs.

    • Carina Onneken
    • Tobias Morack
    • Ryan Gilmour
    ResearchOpen Access
    Nature
    Volume: 621, P: 753-759
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Together with a companion paper, the generation of a transcriptomic atlas for the mouse lemur and analyses of example cell types establish this animal as a molecularly tractable primate model organism.

    • Antoine de Morree
    • Iwijn De Vlaminck
    • Mark A. Krasnow
    ResearchOpen Access
    Nature
    Volume: 644, P: 173-184
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Alterations in the tumour suppressor genes STK11 and/or KEAP1 can identify patients with advanced non-small-cell lung cancer who are likely to benefit from combinations of PD-(L)1 and CTLA4 immune checkpoint inhibitors added to chemotherapy.

    • Ferdinandos Skoulidis
    • Haniel A. Araujo
    • John V. Heymach
    ResearchOpen Access
    Nature
    Volume: 635, P: 462-471
  • The citric acid cycle (TCA) is a fundamental metabolic pathway to release stored energy in living organisms. Here, the authors report two linked cycles of reactions that each oxidize glyoxylate into CO2 and generate intermediates shared with the modern TCA cycle, shedding light into a plausible TCA protometabolism.

    • Greg Springsteen
    • Jayasudhan Reddy Yerabolu
    • Ramanarayanan Krishnamurthy
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-8
  • Investigation of a reaction scope usually starts with the optimization for a model substrate. Here, the authors apply a time-efficient multi-substrate screening approach to identify a general organocatalyst for the Diels–Alder reaction of cyclopentadiene with α,β-unsaturated aldehydes.

    • Hyejin Kim
    • Gabriela Gerosa
    • Benjamin List
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-6
  • In this study, the authors describe SANA, a nitroalkene derivative of salicylate, as a potential activator of creatine-dependent energy expenditure and thermogenesis in adipose tissue. Preclinical and clinical data from this paper also suggest that SANA improves glucose homeostasis and promotes weight loss in mice and humans.

    • Karina Cal
    • Alejandro Leyva
    • Carlos Escande
    ResearchOpen Access
    Nature Metabolism
    Volume: 7, P: 1550-1569
  • Germinal centre B cells modify their mutation rate to preserve high-affinity receptors, thereby safeguarding high-affinity B cell lineages and enhancing the outcomes of antibody affinity maturation.

    • Julia Merkenschlager
    • Andrew G. T. Pyo
    • Michel C. Nussenzweig
    ResearchOpen Access
    Nature
    Volume: 641, P: 495-502
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Single-atom alloys have emerged as highly active and selective catalysts that do not follow the traditional models of heterogeneous catalysis. Now it has been shown that the binding of adsorbates at their surface abides by a simple 10-electron count rule, which can identify promising catalysts for various applications.

    • Julia Schumann
    • Michail Stamatakis
    • Romain Réocreux
    ResearchOpen Access
    Nature Chemistry
    Volume: 16, P: 749-754
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Corticosteroid binding globulin modulates circulating glucocorticoids, but its metabolic implications remain unclear. Here, the authors show that CBG regulators neutrophil elastase and alpha-1-antitrypsin control glucocorticoid bioavailability in adipose tissue, linking obesity and inflammation to metabolic outcomes in a sex-specific manner in mice and revealing parallels with human carriers of deleterious SERPINA1 mutations.

    • Luke D. Boyle
    • Allende Miguelez-Crespo
    • Mark Nixon
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-16
  • A genome-wide association study including over 76,000 individuals with schizophrenia and over 243,000 control individuals identifies common variant associations at 287 genomic loci, and further fine-mapping analyses highlight the importance of genes involved in synaptic processes.

    • Vassily Trubetskoy
    • Antonio F. Pardiñas
    • Jim van Os
    Research
    Nature
    Volume: 604, P: 502-508
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • SUMOylation is a post-translational modification that has been shown to be altered in cancer. Here, the authors show that loss of the SUMO isopeptidase SENP6 leads to unrestricted SUMOylation and genomic instability promoting lymphomagenesis and generating vulnerability to PARP inhibition.

    • Markus Schick
    • Le Zhang
    • Ulrich Keller
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-16
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Halogen bonding (HB) catalysis is rapidly gaining momentum, however, cases of XB activation for challenging bonds formation are rare. Here, the authors show a robust XB catalyzed 2-deoxyglycosylation with broad scope and featuring a quantum tunneling phenomenon in the proton transfer rate determining step.

    • Chunfa Xu
    • V. U. Bhaskara Rao
    • Charles C. J. Loh
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12