Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 93 results
Advanced filters: Author: Justin Xiang Clear advanced filters
  • In this attempt at xenotransplantation of a lung from a genetically modified pig into a brain-dead recipient, although the grafted lung initially maintained viability and functionality, antibody-mediated rejection rapidly occurred, contributing to xenograft damage.

    • Jianxing He
    • Jiang Shi
    • Xin Xu
    Research
    Nature Medicine
    Volume: 31, P: 3388-3393
  • It remains unclear whether machine learning methods can accurately identify cancer driver alterations. Here, the authors compare machine learning-based approaches to other computational methods to determine their utility for annotating variants of unknown significance and identifying driver alterations in real-world cancer patient data, demonstrating superior performance.

    • Thinh N. Tran
    • Chris Fong
    • Justin Jee
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • A study generates a clinicogenomics dataset resource, MSK-CHORD, that combines natural language processing-derived clinical annotations with patient medical data from various sources to improve models of cancer outcome.

    • Justin Jee
    • Christopher Fong
    • Xinran Bi
    ResearchOpen Access
    Nature
    Volume: 636, P: 728-736
  • Electrochemical modulation of fluorophores enables regulating their emission states, facilitating spectral unmixing of up to four fluorophores with similar spectral characteristics. This method is readily applicable to multicolour STED imaging, effectively expanding a single imaging channel to four channels.

    • Ying Yang
    • Yuanqing Ma
    • J. Justin Gooding
    ResearchOpen Access
    Nature Photonics
    Volume: 19, P: 718-724
  • The genetic and epigenetic predisposition of bilateral Wilms tumour remains to be investigated. Here, the authors perform multiomics analysis and identify the predominant genetic and epigenetic events associated with bilateral Wilms tumour predisposition.

    • Andrew J. Murphy
    • Changde Cheng
    • Xiang Chen
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-15
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • A screen of nutrient-derived compounds identified trans-vaccenic acid as a promoter of effector T cell function, and functional assays demonstrate that this occurs via inactivation of GPR43 on T cells.

    • Hao Fan
    • Siyuan Xia
    • Jing Chen
    ResearchOpen Access
    Nature
    Volume: 623, P: 1034-1043
  • By combining a deep mutational scanning strategy with molecular modelling, electron microscopy as well as cellular and biochemical approaches, the authors identify key amino acids in the C-terminal domain of the Zika virus envelope protein (E) that regulate viral replication in mosquito and human cells.

    • Yin Xiang Setoh
    • Alberto A. Amarilla
    • Alexander A. Khromykh
    Research
    Nature Microbiology
    Volume: 4, P: 876-887
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Microfold cells (M-cell) are specialized cells of the intestine that sample luminal microbiota and dietary antigens. Here the authors show that epithelial non-canonical NFκB signalling, as induced by NIK, is important for M-cells maintenance, yet constitutive NIK activation is associated with gut inflammation and inflammatory bowel disease.

    • Sadeesh K. Ramakrishnan
    • Huabing Zhang
    • Yatrik M. Shah
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-16
  • The progress in pre-clinical drug discovery for Wilms tumor (WT) is limited by a lack of disease models. Here, the authors develop 45 heterotopic WT patient-derived xenografts including several anaplastic models that recapitulate the biological heterogeneity of WT, and propose this as a resource for evaluating future therapeutics for WT.

    • Andrew J. Murphy
    • Xiang Chen
    • Andrew M. Davidoff
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-13
  • Material–microbe hybrids represent a promising strategy for harnessing biochemical reactivity using sunlight, yet little is known about the effect of the interaction on the organism. Here the interface of a CO2- and N2-fixing bacterium to CdTe alters its biochemical pathways, resulting in quantum efficiency close to the theoretical limit.

    • Xun Guan
    • Sevcan Erşan
    • Chong Liu
    Research
    Nature Catalysis
    Volume: 5, P: 1019-1029
  • A transcriptomics study demonstrates cell-type-specific responses to differentially aged blood and shows young blood to have restorative and rejuvenating effects that may be invoked through enhanced mitochondrial function.

    • Róbert Pálovics
    • Andreas Keller
    • Tony Wyss-Coray
    Research
    Nature
    Volume: 603, P: 309-314
  • The influence of X chromosome genetic variation on blood lipids and coronary heart disease (CHD) is not well understood. Here, the authors analyse X chromosome sequencing data across 65,322 multi-ancestry individuals, identifying associations of the Xq23 locus with lipid changes and reduced risk of CHD and diabetes mellitus.

    • Pradeep Natarajan
    • Akhil Pampana
    • Gina M. Peloso
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-14
  • Bulk RNA sequencing of organs and plasma proteomics at different ages across the mouse lifespan is integrated with data from the Tabula Muris Senis, a transcriptomic atlas of ageing mouse tissues, to describe organ-specific changes in gene expression during ageing.

    • Nicholas Schaum
    • Benoit Lehallier
    • Tony Wyss-Coray
    Research
    Nature
    Volume: 583, P: 596-602