Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 6661 results
Advanced filters: Author: L S Hall Clear advanced filters
  • Using a system to adjust the strength of cavity vacuum fields penetrating a Hall bar, a study describes the effect of the vacuum field of a cavity on electronic correlations in quantum Hall systems.

    • Josefine Enkner
    • Lorenzo Graziotto
    • Jérôme Faist
    ResearchOpen Access
    Nature
    Volume: 641, P: 884-889
  • Dirac fermions at apnjunction can exhibit a wide variety of unusual properties. Here, the authors investigate the dynamics of such fermions in a graphene junction using shot noise measurements and demonstrate the crucial role of junction length.

    • N. Kumada
    • F. D. Parmentier
    • P. Roulleau
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-5
  • Whilst superlattices containing thin films of 5d transition metal oxides are expected to yield strong interfacial coupling, only weak effects have been observed. Here, the authors report strong coupling between 3d SrMnO3 and 5d SrIrO3due to the interplay of strong Coulomb and spin orbit interactions.

    • John Nichols
    • Xiang Gao
    • Ho Nyung Lee
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-6
  • Previous models explain solid-solution strengthening by differences in atomic volume and electronegativity of the constituent atoms. Here, the authors consider both factors simultaneously and identify atomic volume as the dominant factor for FCC alloys.

    • P. H. F. Oliveira
    • C. L. G. P. Martins
    • F. G. Coury
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Magnetization reversal in magnetic topological insulators drives quantum phase transitions between quantum anomalous Hall, axion insulator, and normal insulator states. Using novel analysis protocol, the authors investigate critical behaviours of these transitions and establish their electronic origin.

    • Peng Deng
    • Peng Zhang
    • Kang L. Wang
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-7
  • Graphene on boron nitride gives rise to a moiré superlattice displaying the Hofstadter butterfly: a fractal dependence of energy bands on external magnetic fields. Now, by means of capacitance spectroscopy, further aspects of this system are revealed—most notably, suppression of quantum Hall antiferromagnetism at particular commensurate magnetic fluxes.

    • G. L. Yu
    • R. V. Gorbachev
    • A. Mishchenko
    Research
    Nature Physics
    Volume: 10, P: 525-529
  • Quantum Hall phases in two-dimensional systems have chiral edges, along which electrons propagate in one direction without backscattering. Here, the authors use nuclear magnetic resonance to demonstrate how chiral modes establish dynamical nuclear polarization in a quantum Hall ferromagnet.

    • Kaifeng Yang
    • Katsumi Nagase
    • Hongwu Liu
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-7
  • Fractional quantum Hall states in 2D electron gases arise due to strong electron-electron interactions, which makes a general theoretical understanding difficult. Fu et al. present data showing the ν = 5/3 quantum Hall state has a 3/2 plateau in the diagonal resistance that has not been captured by existing models.

    • Hailong Fu
    • Yijia Wu
    • Xi Lin
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-6
  • Skyrmions, when driven by any applied force, experience an addition sideways motion known as the skyrmion hall effect. Here, Brearton et al. present a reciprocal space method for determining the strength of the skyrmion hall effect, making measurement possible for skyrmion lattices.

    • R. Brearton
    • L. A. Turnbull
    • T. Hesjedal
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-6
  • The boundaries of fractional quantum Hall states can host multiple, interacting one-dimensional edge modes, which test our understanding of strongly interacting systems. Here the authors observe the edge-mode equilibration transition that was predicted for the ν=2/3 fractional quantum Hall state.

    • Yonatan Cohen
    • Yuval Ronen
    • Vladimir Umansky
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-6
  • A technique that allows the electrical detection of spin-polarized transport in semiconductors without disturbing the spin-polarized current or using magnetic elements has now been demonstrated. The approach could lead to the integration of spintronics elements into semiconductor microelectronic circuits.

    • J. Wunderlich
    • A. C. Irvine
    • T. Jungwirth
    Research
    Nature Physics
    Volume: 5, P: 675-681
  • The current known two-dimensional topological insulators with small band gaps limit the potential for room temperature applications. Here, Chen et al. observe a sizable gap of 129 meV in a 1T'-WSe2 single layer grown on bilayer graphene with in-gap edge state near the layer boundary.

    • P. Chen
    • Woei Wu Pai
    • T.-C. Chiang
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-7
  • The author demonstrates that laser-driven ultracold Fermi gases can exhibit color-orbit-like coupling with SU(3) symmetry. This leads to color-like oscillations and other quantum-chromodyamics-like phenomena in an atomic physics laboratory.

    • Chetan S. Madasu
    • Chirantan Mitra
    • David Wilkowski
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-8
  • The authors demonstrate quantum Hall effect in semiconducting layered oxide Bi2O2Se. Its unique low mass among the oxides of 0.14 me and pronounced layered structure makes Bi2O2Se highly susceptible to the quantum confinement effects.

    • Oleksandr Zheliuk
    • Yuliia Kreminska
    • Uli Zeitler
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-7
  • Orbital angular momentum transfer from optical vortex beams to electronic quantum Hall states is reported in a graphene sheet, showing a robust contribution to the radial photocurrent that depends on the vorticity of light.

    • Deric Session
    • Mahmoud Jalali Mehrabad
    • Mohammad Hafezi
    Research
    Nature Photonics
    Volume: 19, P: 156-161
  • The fractional quantum Hall effect occurs when electrons move in Landau levels. In this study, using a theoretical flat-band lattice model, the fractional quantum Hall effect is observed in the presence of repulsive interactions when the band is one third full and in the absence of Landau levels.

    • D.N. Sheng
    • Zheng-Cheng Gu
    • L. Sheng
    ResearchOpen Access
    Nature Communications
    Volume: 2, P: 1-5
  • Non-local transport measurements on mercury telluride quantum wells show clear signatures of the ballistic spin Hall effect. The ballistic nature of the experiment allows the observed effect to be interpreted as a direct consequence of the band structure of these semiconductor nanostructures, rather that being caused by impurity scattering.

    • C. Brüne
    • A. Roth
    • L. W. Molenkamp
    Research
    Nature Physics
    Volume: 6, P: 448-454
  • Ohmic contacts to n-type molybdenum disulfide can be created over a temperature range from millikelvins to 300 K using a window-contacted technique, which leads to evidence for fractional quantum Hall states at filling fractions of 4/5 and 2/5 in the lowest Landau levels of bilayer molybdenum disulfide devices.

    • Siwen Zhao
    • Jinqiang Huang
    • Zheng Vitto Han
    ResearchOpen Access
    Nature Electronics
    Volume: 7, P: 1117-1125
  • The complex electronic motion in the quantum Hall regime in semiconductors has so far eluded analysis of its microscopic structure. Here, the authors use scanning gate microscopy to measure the spatial structure of transport inside a metal in this regime, opening the way for localized manipulation of the electronic states.

    • B. Hackens
    • F. Martins
    • V. Bayot
    Research
    Nature Communications
    Volume: 1, P: 1-6
  • The quantum Hall effect takes place in a two-dimensional electron gas under a strong magnetic field and involves current flow along the edges of the sample. In the fractional regime, counter-propagating modes that carry energy but not charge — the so-called neutral modes — have been predicted but never observed. These authors report the first direct observation of these elusive modes.

    • Aveek Bid
    • N. Ofek
    • D. Mahalu
    Research
    Nature
    Volume: 466, P: 585-590
  • The transport behaviour of counter-propagating edge modes in the hole-conjugate fractional quantum Hall state is not fully understood. Here, by combining local noise thermometry and thermal conductance measurements, the authors show the absence of thermal equilibration on the edge at macroscopic distances.

    • Ron Aharon Melcer
    • Bivas Dutta
    • Vladimir Umansky
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-7
  • In quantum anomalous Hall (QAH) materials, the mesoscopic scattering length (Ls) plays an instrumental role in determining transport properties. Here, the authors examine Ls in three regimes (QAH, quantum critical, and insulating) with distinct transport behaviours, and find a universal Ls across all regimes.

    • Peng Deng
    • Christopher Eckberg
    • Kang L. Wang
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-7
  • Noncoplanar magnets are promising for spintronics but are rare and challenging to find. Here, the authors provide a chemical design strategy to produce materials with noncoplanar magnetic orders, and strong signatures of their magnetism in the Hall effect.

    • Grigorii Skorupskii
    • Fabio Orlandi
    • Leslie M. Schoop
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-11
  • The knowledge of quantum numbers of the edge modes is essential for understanding fractional Hall states containing counter-propagating downstream and upstream modes. Here the authors identify the edge quantum numbers by probing a crossover from non-equilibrated to equilibrated edge mode regime in thermal conductance.

    • Saurabh Kumar Srivastav
    • Ravi Kumar
    • Anindya Das
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-8
  • 2D transition metal ditellurides exhibit nontrivial topological phases, but the controlled bottom-up synthesis of these materials is still challenging. Here, the authors report the layer-by-layer growth of large-area bilayer and trilayer 1T’ MoTe2 films, showing thickness-dependent ferroelectricity and nonlinear Hall effect.

    • Teng Ma
    • Hao Chen
    • Kian Ping Loh
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-10
  • Recently graphene has emerged as a new platform for the study of quantum Hall states. Here, by means of noise measurements, the authors report evidence for the existence of the upstream mode and its ballistic nature in the hole-conjugate fractional quantum Hall state in a bilayer graphene device.

    • Ravi Kumar
    • Saurabh Kumar Srivastav
    • Anindya Das
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-7
  • The intrinsic robustness to perturbations makes antiferromagnets ideal building blocks for spintronic devices, however, it also manipulation and detection of antiferromagnetic ordering difficult. Here, Xu et al demonstrate an anisotropic tunnelling magnetoresistance in an all-antiferromagnetic tunnel junction.

    • Shijie Xu
    • Zhizhong Zhang
    • Weisheng Zhao
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-9
  • Hall resistance quantization measurements in the quantum anomalous Hall effect regime on a device based on the magnetic topological insulator V-doped (Bi,Sb)2Te3 show that the system can provide a zero external magnetic field quantum standard of resistance.

    • D. K. Patel
    • K. M. Fijalkowski
    • H. Scherer
    Research
    Nature Electronics
    Volume: 7, P: 1111-1116
  • Whether paternal pre-conceptual SARS-CoV-2 infection impacts sperm RNA content, or effects offspring phenotypes, has not been previously investigated. Here authors report changes in sperm noncoding RNAs in SARS-CoV-2 infected sires and increased anxiety-like behaviors in offspring.

    • Elizabeth A. Kleeman
    • Carolina Gubert
    • Anthony J. Hannan
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-21
  • The quantum Hall effect in GaAs-based devices defines resistance standards accurate to within one part in 10−9 at magnetic fields close to 10 T. Here, Lafont et al. demonstrate such accuracies over an extended magnetic field range at 1.4 K in chemically vapour-deposited graphene on silicon carbide.

    • F. Lafont
    • R. Ribeiro-Palau
    • W. Poirier
    ResearchOpen Access
    Nature Communications
    Volume: 6, P: 1-9
  • Material implementation of machine learning algorithms for advanced computing at cryogenic temperature remains rare. Here, the authors report a cryogenic in-memory computing platform using chiral edge states of magnetic topological insulators.

    • Yuting Liu
    • Albert Lee
    • Qiming Shao
    Research
    Nature Materials
    Volume: 24, P: 559-564
  • Exchange bias occurs in a variety of magnetic materials and heterostructures. The quintessential example occurs in antiferromagnetic/ferromagnetic heterostructures and has been employed extensively in magnetic memory devices. Here, via a specific field training protocol, the authors demonstrate an exchange bias of up to 400mT in odd layered MnBi2Te4.

    • Su Kong Chong
    • Yang Cheng
    • Kang L. Wang
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-10
  • The kagome magnet Co3Sn2S2 has complex magnetic behaviour and a topological band structure that yields a large anomalous Hall effect. Guguchia et al. find phase separation between ferro- and anti-ferromagnetic orders and that the volume-wise competition controls the anomalous Hall conductivity

    • Z. Guguchia
    • J. A. T. Verezhak
    • M. Z. Hasan
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-9
  • Valley dependent spin polarization called spin-valley locking appears in absence of magnetism but it is limited to rare examples of transition metal dichalcogenides. Here, the authors report evidence of spin-valley locking and stacked quantum Hall effect in a bulk Dirac semimetal BaMnSb2.

    • J. Y. Liu
    • J. Yu
    • Z. Q. Mao
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-10
  • Kondo systems offer a rich platform to study the interplay between strong correlations and topology. Here the authors observe a large anomalous Hall conductivity in a Kondo ferromagnet USbTe, which they attribute to the Berry curvature originating from flat bands induced by the Kondo hybridization.

    • Hasan Siddiquee
    • Christopher Broyles
    • Sheng Ran
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-9
  • The evolution of the quantum Hall state from bulk spectrum to edge state remains obscure. Here, Patlatiuk and Scheller et al. observe magnetic compression against a hard edge followed by motion into the bulk and depopulation of the integer quantum Hall edge states, in agreement with the bulk-to-edge correspondence.

    • T. Patlatiuk
    • C. P. Scheller
    • D. M. Zumbühl
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-8
  • Direct measurement of the Berry curvature and the quantum metric of photonic modes in a high-finesse planar microcavity is achieved, enabling quantitative prediction of the independently measured anomalous Hall drift.

    • A. Gianfrate
    • O. Bleu
    • G. Malpuech
    Research
    Nature
    Volume: 578, P: 381-385