Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 498 results
Advanced filters: Author: Marcus Alexander Clear advanced filters
  • Here the authors compare genetic testing strategies in rare movement disorders, improve diagnostic yield with genome analysis, and establish CD99L2 as an X-linked spastic ataxia gene, showing that CD99L2–CAPN1 signaling disruption likely drives neurodegeneration.

    • Benita Menden
    • Rana D. Incebacak Eltemur
    • Tobias B. Haack
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-21
  • Wegner et al. apply machine learning to video recordings of walking tasks in people with ataxia and healthy controls using sensor-free motion capture. Their models replicate clinical ratings and detect subtle longitudinal gait changes that are challenging to capture in standard assessments, supporting improved monitoring of disease progression.

    • Philipp Wegner
    • Marcus Grobe-Einsler
    • Jennifer Faber
    ResearchOpen Access
    Communications Medicine
    P: 1-12
  • A large genome-wide association study of more than 5 million individuals reveals that 12,111 single-nucleotide polymorphisms account for nearly all the heritability of height attributable to common genetic variants.

    • Loïc Yengo
    • Sailaja Vedantam
    • Joel N. Hirschhorn
    ResearchOpen Access
    Nature
    Volume: 610, P: 704-712
  • Feng et al. report a dynamic template-assisted strategy for depositing perovskite nanowire arrays across areas 12 times larger than the template itself, on diverse substrates. Large-area pixelated photodetectors with a responsivity of 1660A W−1, detectivity of 3.9E14 Jones, and linear dynamic range of 160.3 dB are achieved.

    • Mingjie Feng
    • Jiwon Byun
    • Christoph J. Brabec
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • Affinity-selection platforms are powerful tools in early drug discovery, but current technologies such as DNA-encoded libraries (DELs) are limited by synthesis complexity and incompatibility with nucleic acid binding targets. Here, the authors present a barcode-free self-encoded library (SEL) platform that enables direct screening of over half a million small molecules in a single experiment.

    • Edith van der Nol
    • Nils Alexander Haupt
    • Sebastian Pomplun
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-12
  • Many genetic loci have been identified to be associated with kidney disease, but the molecular mechanisms are not well understood. Here, the authors perform epigenome-wide association studies on kidney function measures to identify epigenetic marks and pathways involved in kidney function.

    • Pascal Schlosser
    • Adrienne Tin
    • Alexander Teumer
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-16
  • Serum urate concentration can be studied in large datasets to find genetic and epigenetic loci that may be related to cardiometabolic traits. Here the authors identify and replicate 100 urate-associated CpGs, which provide insights into urate GWAS loci and shared CpGs of urate and cardiometabolic traits.

    • Adrienne Tin
    • Pascal Schlosser
    • Anna Köttgen
    ResearchOpen Access
    Nature Communications
    Volume: 12, P: 1-18
  • Multisystem inflammatory syndrome following SARS-CoV-2 infection results from increased serum levels of TGFβ, which impairs the reactivation of virus-specific T cells.

    • Carl Christoph Goetzke
    • Mona Massoud
    • Mir-Farzin Mashreghi
    ResearchOpen Access
    Nature
    Volume: 640, P: 762-771
  • Investigating dynamics of polyatomic molecules is difficult as their potential energy surfaces are multidimensional due to coupled degrees of freedom. Here the authors demonstrate a spatial selective gating technique to probe the different vibrational modes of water upon core-level excitation with X-rays.

    • Rafael C. Couto
    • Vinícius V. Cruz
    • Alexander Föhlisch
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-7
  • Heart failure is a complex syndrome that is associated with many different underlying risk factors. Here, to increase power, the authors jointly analyse cases of heart failure of different aetiologies in a genome-wide association study and identify 11 loci of which ten had not been previously reported.

    • Sonia Shah
    • Albert Henry
    • R. Thomas Lumbers
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Inbreeding depression has been observed in many different species, but in humans a systematic analysis has been difficult so far. Here, analysing more than 1.3 million individuals, the authors show that a genomic inbreeding coefficient (FROH) is associated with disadvantageous outcomes in 32 out of 100 traits tested.

    • David W Clark
    • Yukinori Okada
    • James F Wilson
    ResearchOpen Access
    Nature Communications
    Volume: 10, P: 1-17
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • Using data from a single time point, passenger-approximated clonal expansion rate (PACER) estimates the fitness of common driver mutations that lead to clonal haematopoiesis and identifies TCL1A activation as a mediator of clonal expansion.

    • Joshua S. Weinstock
    • Jayakrishnan Gopakumar
    • Siddhartha Jaiswal
    Research
    Nature
    Volume: 616, P: 755-763
  • Histological slides often contain artifacts that affect the performance of downstream image analysis. Here, the authors present GrandQC, a tool that enables high-precision tissue and artifact segmentation in histological slides. This tool can be used to monitor sample preparation and scanning quality across pathology departments.

    • Zhilong Weng
    • Alexander Seper
    • Yuri Tolkach
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-12
  • Reduced glomerular filtration rate (eGFR) is a hallmark of chronic kidney disease. Here, Pattaro et al. conduct a meta-analysis to discover several new loci associated with variation in eGFR and find that genes associated with eGFR loci often encode proteins potentially related to kidney development.

    • Cristian Pattaro
    • Alexander Teumer
    • Caroline S. Fox
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-19
  • Materials which simultaneously exhibit superconductivity and topologically non-trivial electronic band structure possess potential applications in quantum computing but have yet to be found. Here, the authors find superconductivity in MoTe2, a material predicted to be topologically non-trivial.

    • Yanpeng Qi
    • Pavel G. Naumov
    • Sergey A. Medvedev
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • Stratified medicine promises to tailor treatment for individual patients, however it remains a major challenge to leverage genetic risk data to aid patient stratification. Here the authors introduce an approach to stratify individuals based on the aggregated impact of their genetic risk factor profiles on tissue-specific gene expression levels, and highlight its ability to identify biologically meaningful and clinically actionable patient subgroups, supporting the notion of different patient ‘biotypes’ characterized by partially distinct disease mechanisms.

    • Lucia Trastulla
    • Georgii Dolgalev
    • Michael J. Ziller
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-28
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • In the Tumor Profiler proof-of-concept observational study, a multiomics approach for profiling tumors from patients with melanoma was feasible, returning data within 4 weeks and informing treatment recommendations in 75% of cases.

    • Nicola Miglino
    • Nora C. Toussaint
    • Andreas Wicki
    ResearchOpen Access
    Nature Medicine
    Volume: 31, P: 2430-2441
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Understanding cycloaddition mechanisms is beneficial for the creation of extended carbon nanostructures, yet traditional models often overlook symmetry-based mechanistic effects. Here, the authors employ topological classifiers to identify symmetry-forbidden pathways in polycyclic aromatic azomethine ylide cycloadditions, revealing that topologically-allowed endothermic reactions can guide nanographene engineering.

    • Juan Li
    • Amir Mirzanejad
    • Carlos-Andres Palma
    ResearchOpen Access
    Communications Chemistry
    Volume: 8, P: 1-10
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Genome-wide association meta-analyses of waist-to-hip ratio adjusted for body mass index in more than 224,000 individuals identify 49 loci, 33 of which are new and many showing significant sexual dimorphism with a stronger effect in women; pathway analyses implicate adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution.

    • Dmitry Shungin
    • Thomas W. Winkler
    • Karen L Mohlke
    Research
    Nature
    Volume: 518, P: 187-196
  • Phylogenomic analysis of 7,923 angiosperm species using a standardized set of 353 nuclear genes produced an angiosperm tree of life dated with 200 fossil calibrations, providing key insights into evolutionary relationships and diversification.

    • Alexandre R. Zuntini
    • Tom Carruthers
    • William J. Baker
    ResearchOpen Access
    Nature
    Volume: 629, P: 843-850