Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 407 results
Advanced filters: Author: Martin M. Knight Clear advanced filters
  • Here the authors perform a trans expression quantitative trait locus meta-analysis study of over 3,700 people and link a USP18 variant to expression of 50 inflammation genes and lupus risk, highlighting how genetic regulation of immune responses drives autoimmune disease and informs new therapies.

    • Krista Freimann
    • Anneke Brümmer
    • Kaur Alasoo
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-15
  • The thousands of nuclear spins surrounding gallium arsenide quantum dots can interface with electron spin qubits and photons. With quantum engineering, this nuclear spin ensemble becomes a robust register for quantum information storage.

    • Martin Hayhurst Appel
    • Alexander Ghorbal
    • Mete Atatüre
    ResearchOpen Access
    Nature Physics
    Volume: 21, P: 368-373
  • The quark structure of the f0(980) hadron is still unknown after 50 years of its discovery. Here, the CMS Collaboration reports a measurement of the elliptic flow of the f0(980) state in proton-lead collisions at a nucleon-nucleon centre-of-mass energy of 8.16 TeV, providing strong evidence that the state is an ordinary meson.

    • A. Hayrapetyan
    • A. Tumasyan
    • A. Zhokin
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-19
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • The largest harmonized proteomic dataset of plasma, serum and cerebrospinal fluid samples across major neurodegenerative diseases reveals both disease-specific and transdiagnostic proteomic signatures, including a robust plasma profile associated with the APOEε4 genotype.

    • Farhad Imam
    • Rowan Saloner
    • Simon Lovestone
    ResearchOpen Access
    Nature Medicine
    Volume: 31, P: 2556-2566
  • Genomic, single-cell transcriptomic and epigenetic analyses show that chaetognaths, following extensive gene loss in the gnathiferan lineage, relied on newly evolved genes and lineage-specific tandem duplications, not caused by a whole-genome duplication event, to shape their distinctive body plan.

    • Laura Piovani
    • Daria Gavriouchkina
    • Ferdinand Marlétaz
    ResearchOpen Access
    Nature
    Volume: 645, P: 964-973
  • A global network of researchers was formed to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity; this paper reports 13 genome-wide significant loci and potentially actionable mechanisms in response to infection.

    • Mari E. K. Niemi
    • Juha Karjalainen
    • Chloe Donohue
    ResearchOpen Access
    Nature
    Volume: 600, P: 472-477
  • The heterogeneity of whole-exome sequencing (WES) data generation methods presents a challenge to joint analysis. Here, the authors present a bioinformatics strategy to generate high-quality data from processing diversely generated WES samples, as applied in the Alzheimer’s Disease Sequencing Project.

    • Yuk Yee Leung
    • Adam C. Naj
    • Li-San Wang
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-15
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • Mutations in amyloid precursor protein (APP) and presenilin 1 (PSEN1) cause autosomal dominant AD (ADAD). Here, the authors perform single-nucleus RNA-sequencing of ADAD and other disease risk modifying variant carriers and report altered expression states of specific brain cell types.

    • Logan Brase
    • Shih-Feng You
    • Oscar Harari
    ResearchOpen Access
    Nature Communications
    Volume: 14, P: 1-19
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Whole-genome sequencing, transcriptome-wide association and fine-mapping analyses in over 7,000 individuals with critical COVID-19 are used to identify 16 independent variants that are associated with severe illness in COVID-19.

    • Athanasios Kousathanas
    • Erola Pairo-Castineira
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 607, P: 97-103
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • Insufficient pollen reception, pollen limitation, could exacerbate the threat of extinction or be a consequence of decline in threatened plants. Here, the authors conduct a meta-analysis on pollen limitation studies to find that threatened plants show stronger pollen limitation.

    • Hanyang Lin
    • Yongge Yuan
    • Tiffany M. Knight
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-10
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • A multi-cohort genome-wide association study of tau PET, a brain imaging-based marker of Alzheimer’s disease, identifies a CYP1B1-RMDN2 locus as associated with higher tau and faster cognitive decline. These results suggest a new genetic contribution to cerebral tau and target for Alzheimer’s disease research.

    • Kwangsik Nho
    • Shannon L. Risacher
    • Andrew J. Saykin
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-14
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • In somatic cells the mechanisms maintaining the chromosome ends are normally inactivated; however, cancer cells can re-activate these pathways to support continuous growth. Here, the authors characterize the telomeric landscapes across tumour types and identify genomic alterations associated with different telomere maintenance mechanisms.

    • Lina Sieverling
    • Chen Hong
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-13
  • Viral pathogen load in cancer genomes is estimated through analysis of sequencing data from 2,656 tumors across 35 cancer types using multiple pathogen-detection pipelines, identifying viruses in 382 genomic and 68 transcriptome datasets.

    • Marc Zapatka
    • Ivan Borozan
    • Christian von Mering
    ResearchOpen Access
    Nature Genetics
    Volume: 52, P: 320-330
  • Analysis of cancer genome sequencing data has enabled the discovery of driver mutations. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium the authors present DriverPower, a software package that identifies coding and non-coding driver mutations within cancer whole genomes via consideration of mutational burden and functional impact evidence.

    • Shimin Shuai
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • There’s an emerging body of evidence to show how biological sex impacts cancer incidence, treatment and underlying biology. Here, using a large pan-cancer dataset, the authors further highlight how sex differences shape the cancer genome.

    • Constance H. Li
    • Stephenie D. Prokopec
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-24
  • Whole-genome sequencing data from more than 2,500 cancers of 38 tumour types reveal 16 signatures that can be used to classify somatic structural variants, highlighting the diversity of genomic rearrangements in cancer.

    • Yilong Li
    • Nicola D. Roberts
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 112-121
  • Some cancer patients first present with metastases where the location of the primary is unidentified; these are difficult to treat. In this study, using machine learning, the authors develop a method to determine the tissue of origin of a cancer based on whole sequencing data.

    • Wei Jiao
    • Gurnit Atwal
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Multi-omics datasets pose major challenges to data interpretation and hypothesis generation owing to their high-dimensional molecular profiles. Here, the authors develop ActivePathways method, which uses data fusion techniques for integrative pathway analysis of multi-omics data and candidate gene discovery.

    • Marta Paczkowska
    • Jonathan Barenboim
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-16
  • In this study the authors consider the structural variants (SVs) present within cancer cases of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium. They report hundreds of genes, including known cancer-associated genes for which the nearby presence of a SV breakpoint is associated with altered expression.

    • Yiqun Zhang
    • Fengju Chen
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-14
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Genome-wide analyses identify 30 independent loci associated with obsessive–compulsive disorder, highlighting genetic overlap with other psychiatric disorders and implicating putative effector genes and cell types contributing to its etiology.

    • Nora I. Strom
    • Zachary F. Gerring
    • Manuel Mattheisen
    ResearchOpen Access
    Nature Genetics
    Volume: 57, P: 1389-1401
  • Dimethyl fumarate (DMF) is an anti-inflammatory drug proposed as a treatment for COVID19. Here the results are reported from a randomised trial testing DMF treatment in 713 patients hospitalised with COVID-19. DMF was not associated with any improvement in day 5 outcomes.

    • Peter Sandercock
    • Janet Darbyshire
    • Martin J. Landray
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-13
  • Here, Blaser, Bork, Fraser, Knight and Wang highlight the most exciting findings in the field of microbiome research and discuss what will be necessary to obtain a better understanding of the role of the microbiota in human health and disease, and to develop microbiota-based therapies.

    • Martin Blaser
    • Peer Bork
    • Jun Wang
    Reviews
    Nature Reviews Microbiology
    Volume: 11, P: 213-217
  • Perivascular and leptomeningeal macrophages, collectively termed here parenchymal border macrophages, are shown to regulate flow dynamics of cerebrospinal fluid, implicating this cell population as new therapeutic targets in neurological diseases such as Alzheimer’s.

    • Antoine Drieu
    • Siling Du
    • Jonathan Kipnis
    Research
    Nature
    Volume: 611, P: 585-593