Filter By:

Journal Check one or more journals to show results from those journals only.

Choose more journals

Article type Check one or more article types to show results from those article types only.
Subject Check one or more subjects to show results from those subjects only.
Date Choose a date option to show results from those dates only.

Custom date range

Clear all filters
Sort by:
Showing 1–50 of 544 results
Advanced filters: Author: Timothy C. Hall Clear advanced filters
  • The study shows a micron-scale polariton structure where an artificial gauge field creates topological, non-reciprocal edge transport without strong magnetic fields, overcoming key limits for topological polariton lasers and devices.

    • Simon Widmann
    • Jonas Bellmann
    • Sebastian Klembt
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-10
  • The APOE-ε4 allele is the strongest genetic risk factor for late-onset Alzheimer’s disease, but it is not deterministic. Here, the authors show that common genetic variation changes how APOE-ε4 influences cognition.

    • Alex G. Contreras
    • Skylar Walters
    • Timothy J. Hohman
    ResearchOpen Access
    Nature Communications
    P: 1-17
  • Conductance quantization is the hallmark of non-interacting confined systems. The authors show that the quantization in graphene nanoconstrictions with low edge disorder is suppressed in the quantum Hall regime. This is explained by the addition of new conductance channels due to electrostatic screening.

    • José M. Caridad
    • Stephen R. Power
    • Peter Bøggild
    ResearchOpen Access
    Nature Communications
    Volume: 9, P: 1-6
  • GRX-810, an oxide dispersion strengthened alloy, shows excellent structural performance above 1100°C and stability up to 1300 °C. Grain-size effects, additive manufacturing–induced anisotropy, and fine trigonal Y₂O₃ particles enhance creep resistance.

    • Timothy M. Smith
    • Christopher A. Kantzos
    • Paul R. Gradl
    ResearchOpen Access
    Nature Communications
    Volume: 17, P: 1-14
  • Achieving propagating topological exciton polaritons at room temperature is challenging. Here, the authors demonstrate room-temperature valley-polarized topological polaritons with valley-dependent propagation in a perovskite lattice formed by two mutually inverted honeycomb lattices with a bearded interface.

    • Feng Jin
    • Subhaskar Mandal
    • Rui Su
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-8
  • When interfaced with a current-carrying heavy metal, spin orbit effects can generate a torque on the magnetization of a ferromagnet, understood as a bulk effect. Here, the authors show evidence of an interfacial contribution to such spin orbit torque in O-doped W/CoFeB thin film systems.

    • Kai-Uwe Demasius
    • Timothy Phung
    • Stuart S. P. Parkin
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-7
  • Van der Waals heterostructures offer the potential of integrating multiple material layers into a single device to achieve new functionalities. Here, Ou et al combine ZrTe2, a topological semimetal, with CrTe2, a 2D ferromagnet, in a single heterostructure and demonstrate spin-orbit torque switching of the 2D ferromagnet by current in the topological semimetal.

    • Yongxi Ou
    • Wilson Yanez
    • Nitin Samarth
    ResearchOpen Access
    Nature Communications
    Volume: 13, P: 1-9
  • Strongly coupled light–matter systems could offer enhanced manipulation of topological phenomena. Now, tunable non-Hermitian effects are demonstrated with exciton–polaritons induced by a twist degree of freedom.

    • Jie Liang
    • Hao Zheng
    • Rui Su
    Research
    Nature Physics
    Volume: 22, P: 151-157
  • Here the authors show that tissue-resident memory and exhausted T cells in tumors are distinct populations that are shaped by relative presence or absence of TCR signals, suggesting that a tailored therapeutic strategy is needed to target each subset.

    • Thomas N. Burn
    • Jan Schröder
    • Laura K. Mackay
    ResearchOpen Access
    Nature Immunology
    Volume: 27, P: 98-109
  • The Tomonaga–Luttinger liquid framework can be used to describe 1D quantum systems, spanning fermions, bosons and anyons. In this Review, we discuss the various platforms that can host TLL states, including Josephson junctions, cold atoms and topological materials, and discuss the advances TLL theory can provide in quantum criticality, nonequilibrium dynamics and condensed-matter physics exploration.

    • Isabelle Bouchoule
    • Roberta Citro
    • Bent Weber
    Reviews
    Nature Reviews Physics
    Volume: 7, P: 565-580
  • Topologically protected states of matter are receiving widespread attention owing to their unusual electronic properties. Using numerical simulations, this study predicts that tin telluride is a physical realization of a new class of materials termed topological crystalline insulators.

    • Timothy H. Hsieh
    • Hsin Lin
    • Liang Fu
    Research
    Nature Communications
    Volume: 3, P: 1-7
  • As presented at the ESMO Congress 2025: Results of the phase 2/3 AGITG DYNAMIC-III trial show that de-escalated chemotherapy based on ctDNA-negative status in patients with stage III colon cancer did not meet non-inferiority for 3-year recurrence-free survival when compared to standard of care, although it enables better informed treatment decisions.

    • Jeanne Tie
    • Yuxuan Wang
    • Petr Kavan
    Research
    Nature Medicine
    Volume: 31, P: 4291-4300
  • The reliable assembly of two-dimensional materials into van der Waals heterostructures is a critical step towards nanoscale electronic integration. Here the authors present a technique for batch fabrication of graphene/boron nitride stacks with clean interfaces and high-yield.

    • Filippo Pizzocchero
    • Lene Gammelgaard
    • Timothy J. Booth
    ResearchOpen Access
    Nature Communications
    Volume: 7, P: 1-10
  • How TNF regulates NK cell function and homeostasis is not fully understood. Here the authors investigate conditional knock out mice with TNFR1 and/or TNFR2 deficiency in NK cells upon bacterial infection, and identify that TNFR1 promotes cell death and impairs immunity while TNFR2 increases NK accumulation and enhances immunity.

    • Timothy R. McCulloch
    • Gustavo R. Rossi
    • Fernando Souza-Fonseca-Guimaraes
    ResearchOpen Access
    Nature Communications
    Volume: 15, P: 1-16
  • Timothy Frayling, Joel Hirschhorn, Peter Visscher and colleagues report a meta-analysis of genome-wide association studies for adult height in 253,288 individuals. They identify 697 variants in 423 loci significantly associated with adult height and find that these variants cluster in pathways involved in growth and together explain one-fifth of the heritability for this trait.

    • Andrew R Wood
    • Tonu Esko
    • Timothy M Frayling
    Research
    Nature Genetics
    Volume: 46, P: 1173-1186
  • Whole-genome sequencing data for 2,778 cancer samples from 2,658 unique donors across 38 cancer types is used to reconstruct the evolutionary history of cancer, revealing that driver mutations can precede diagnosis by several years to decades.

    • Moritz Gerstung
    • Clemency Jolly
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 122-128
  • The authors present SVclone, a computational method for inferring the cancer cell fraction of structural variants from whole-genome sequencing data.

    • Marek Cmero
    • Ke Yuan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-15
  • A novel antiviral targeting the SARS-CoV-2 PLpro protease shows strong efficacy in a mouse model, preventing lung pathology and reducing brain dysfunction. The study provides proof-of-principle that PLpro inhibition may be a viable strategy for preventing and treating long COVID.

    • Stefanie M. Bader
    • Dale J. Calleja
    • David Komander
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-20
  • In Bangladesh, 22 million people are exposed to hydrogeomorphic hazards, of which 86% have low levels of wealth. This study shows a statistically significant bias of populations with lower wealth levels living in hydrogeomorphically unstable areas.

    • Amelie Paszkowski
    • Timothy Tiggeloven
    • Jim W. Hall
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-11
  • An analysis of 24,202 critical cases of COVID-19 identifies potentially druggable targets in inflammatory signalling (JAK1), monocyte–macrophage activation and endothelial permeability (PDE4A), immunometabolism (SLC2A5 and AK5), and host factors required for viral entry and replication (TMPRSS2 and RAB2A).

    • Erola Pairo-Castineira
    • Konrad Rawlik
    • J. Kenneth Baillie
    ResearchOpen Access
    Nature
    Volume: 617, P: 764-768
  • External driving of Rabi oscillations is a first step in the coherent manipulation of spin systems. Here the authors use ultrafast optical pulses to produce classical Rabi oscillations in ferromagnetic CoFeB, enabling the exploration of coherent phenomena in dense ferromagnetic ensembles.

    • Amir Capua
    • Charles Rettner
    • Stuart S. P. Parkin
    ResearchOpen Access
    Nature Communications
    Volume: 8, P: 1-7
  • Understanding deregulation of biological pathways in cancer can provide insight into disease etiology and potential therapies. Here, as part of the PanCancer Analysis of Whole Genomes (PCAWG) consortium, the authors present pathway and network analysis of 2583 whole cancer genomes from 27 tumour types.

    • Matthew A. Reyna
    • David Haan
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-17
  • Here the authors provide an explanation for 95% of examined predicted loss of function variants found in disease-associated haploinsufficient genes in the Genome Aggregation Database (gnomAD), underscoring the power of the presented analysis to minimize false assignments of disease risk.

    • Sanna Gudmundsson
    • Moriel Singer-Berk
    • Anne O’Donnell-Luria
    ResearchOpen Access
    Nature Communications
    Volume: 16, P: 1-14
  • Many tumours exhibit hypoxia (low oxygen) and hypoxic tumours often respond poorly to therapy. Here, the authors quantify hypoxia in 1188 tumours from 27 cancer types, showing elevated hypoxia links to increased mutational load, directing evolutionary trajectories.

    • Vinayak Bhandari
    • Constance H. Li
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-10
  • Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.

    • Yulia Rubanova
    • Ruian Shi
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-12
  • Dense nanostructuring of hBN-encapsulated graphene enables band structure engineering with distinct magnetotransport signatures and a tunable bandgap.

    • Bjarke S. Jessen
    • Lene Gammelgaard
    • Peter Bøggild
    Research
    Nature Nanotechnology
    Volume: 14, P: 340-346
  • Integrative analyses of transcriptome and whole-genome sequencing data for 1,188 tumours across 27 types of cancer are used to provide a comprehensive catalogue of RNA-level alterations in cancer.

    • Claudia Calabrese
    • Natalie R. Davidson
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 129-136
  • The characterization of 4,645 whole-genome and 19,184 exome sequences, covering most types of cancer, identifies 81 single-base substitution, doublet-base substitution and small-insertion-and-deletion mutational signatures, providing a systematic overview of the mutational processes that contribute to cancer development.

    • Ludmil B. Alexandrov
    • Jaegil Kim
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 94-101
  • This overview of the ENCODE project outlines the data accumulated so far, revealing that 80% of the human genome now has at least one biochemical function assigned to it; the newly identified functional elements should aid the interpretation of results of genome-wide association studies, as many correspond to sites of association with human disease.

    • Ian Dunham
    • Anshul Kundaje
    • Ewan Birney
    ResearchOpen Access
    Nature
    Volume: 489, P: 57-74
  • Analyses of 2,658 whole genomes across 38 types of cancer identify the contribution of non-coding point mutations and structural variants to driving cancer.

    • Esther Rheinbay
    • Morten Muhlig Nielsen
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 102-111
  • With the generation of large pan-cancer whole-exome and whole-genome sequencing projects, a question remains about how comparable these datasets are. Here, using The Cancer Genome Atlas samples analysed as part of the Pan-Cancer Analysis of Whole Genomes project, the authors explore the concordance of mutations called by whole exome sequencing and whole genome sequencing techniques.

    • Matthew H. Bailey
    • William U. Meyerson
    • Christian von Mering
    ResearchOpen Access
    Nature Communications
    Volume: 11, P: 1-27
  • The flagship paper of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium describes the generation of the integrative analyses of 2,658 cancer whole genomes and their matching normal tissues across 38 tumour types, the structures for international data sharing and standardized analyses, and the main scientific findings from across the consortium studies.

    • Lauri A. Aaltonen
    • Federico Abascal
    • Christian von Mering
    ResearchOpen Access
    Nature
    Volume: 578, P: 82-93