Noise and impact hazards are pervasive in engineering, necessitating materials capable of absorbing both sound and stress wave energy. Here, we present bioinspired metamaterials with exceptional sound-absorbing and mechanical properties using a weakly-coupled design strategy. These materials incorporate multi-layered resonators for superior acoustic performance and cambered cell walls for enhanced structural strength. They achieve an average absorption coefficient of 0.80 across the 1.0 to 6.0 kHz range, all within a sleek 21 mm thickness. Furthermore, the design transitions failure modes from catastrophic to progressive, resulting in a remarkable 558.4% increase in energy absorption compared to conventional designs.
- Zhendong Li
- Xinxin Wang
- Yang Lu