Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cyclooxygenase inhibitors modulate the p53/HDM2 pathway and enhance chemotherapy-induced apoptosis in neuroblastoma

Abstract

Cyclooxygenase–2 (COX-2) is upregulated in many tumors including neuroblastoma, and its overexpression has been implicated in resistance to p53-dependent apoptosis. Although p53 is rarely mutated in neuroblastoma, the p53 protein is rendered inactive via several mechanisms including sequestration in the cytoplasm. Here, we show that COX inhibitors inhibit the growth of neuroblastoma and when combined with low doses of chemotherapy, exert synergistic effects on neuroblastoma cells. Following COX inhibitor treatment, HDM2, which targets p53 for ubiquitin-mediated degradation, is downregulated, resulting in an attenuation of p53 ubiquitination and an increase in p53 half-life. The level of HDM2 phosphorylation at ser166, which influences both HDM2 and p53 subcellular distribution, is markedly diminished in response to COX inhibitors and is associated with increased p53 nuclear localization. Combining COX inhibitors with low-dose chemotherapy potentiates apoptosis and p53 stability, nuclear localization, and activity. p53 knockdown by siRNA resulted in the rescue of COX-inhibitor-treated cells, indicating that COX inhibitor-induced apoptosis is, at least in part, p53-dependent. Taken together, these results provide the first evidence that COX inhibitors enhance chemosensitivity in neuroblastoma via downregulating HDM2 and augmenting p53 stability and nuclear accumulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Arico S, Pattingre S, Bauvy C, Gane P, Barbat A, Codogno P et al. (2002). Celecoxib induces apoptosis by inhibiting 3-phosphoinositide-dependent protein kinase-1 activity in the human colon cancer HT-29 cell line. J Biol Chem 277: 27613–27621.

    Article  CAS  Google Scholar 

  • Ashcroft M, Ludwig RL, Woods DB, Copeland TD, Weber HO, MacRae EJ et al. (2002). Phosphorylation of HDM2 by Akt. Oncogene 21: 1955–1962.

    Article  CAS  Google Scholar 

  • Bianco R, Ciardiello F, Tortora G . (2005). Chemosensitization by antisense oligonucleotides targeting MDM2. Curr Cancer Drug Targets 5: 51–56.

    Article  CAS  Google Scholar 

  • Brodeur GM . (2003). Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3: 203–216.

    Article  CAS  Google Scholar 

  • Brooks CL, Gu W . (2004). Dynamics in the p53-Mdm2 ubiquitination pathway. Cell Cycle 3: 895–899.

    CAS  PubMed  Google Scholar 

  • Brown JR, DuBois RN . (2005). COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol 23: 2840–2855.

    Article  CAS  Google Scholar 

  • Carr J, Bell E, Pearson AD, Kees UR, Beris H, Lunec J et al. (2006). Increased frequency of aberrations in the p53/MDM2/p14(ARF) pathway in neuroblastoma cell lines established at relapse. Cancer Res 66: 2138–2145.

    Article  CAS  Google Scholar 

  • Choi EM, Heo JI, Oh JY, Kim YM, Ha KS, Kim JI et al. (2005). COX-2 regulates p53 activity and inhibits DNA damage-induced apoptosis. Biochem Biophys Res Commun 328: 1107–1112.

    Article  CAS  Google Scholar 

  • Chou TC, Talalay P . (1981). Generalized equations for the analysis of inhibitions of Michaelis-Menten and higher-order kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. Eur J Biochem 115: 207–216.

    Article  CAS  Google Scholar 

  • Chou TC, Talalay P . (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22: 27–55.

    Article  CAS  Google Scholar 

  • Corcoran CA, He Q, Huang Y, Sheikh MS . (2005). Cyclooxygenase-2 interacts with p53 and interferes with p53-dependent transcription and apoptosis. Oncogene 24: 1634–1640.

    Article  CAS  Google Scholar 

  • Corvi R, Savelyeva L, Breit S, Wenzel A, Handgretinger R, Barak J et al. (1995). Non-syntenic amplification of MDM2 and MYCN in human neuroblastoma. Oncogene 10: 1081–1086.

    CAS  PubMed  Google Scholar 

  • Cui H, Schroering A, Ding HF . (2002). p53 mediates DNA damaging drug-induced apoptosis through a caspase-9-dependent pathway in SH-SY5Y neuroblastoma cells. Mol Cancer Ther 1: 679–686.

    CAS  PubMed  Google Scholar 

  • Dannenberg AJ, Subbaramaiah K . (2003). Targeting cyclooxygenase-2 in human neoplasia: rationale and promise. Cancer Cell 4: 431–436.

    Article  CAS  Google Scholar 

  • Fischer PM, Lane DP . (2004). Small-molecule inhibitors of the p53 suppressor HDM2: have protein-protein interactions come of age as drug targets? Trends Pharmacol Sci 25: 343–346.

    Article  CAS  Google Scholar 

  • Gasparini G, Longo R, Sarmiento R, Morabito A . (2003). Inhibitors of cyclo-oxygenase 2: a new class of anticancer agents? Lancet Oncol 4: 605–615.

    Article  CAS  Google Scholar 

  • Han C, Leng J, Demetris AJ, Wu T . (2004). Cyclooxygenase-2 promotes human cholangiocarcinoma growth: evidence for cyclooxygenase-2-independent mechanism in celecoxib-mediated induction of p21waf1/cip1 and p27kip1 and cell cycle arrest. Cancer Res 64: 1369–1376.

    Article  CAS  Google Scholar 

  • Han JA, Kim JI, Ongusaha PP, Hwang DH, Ballou LR, Mahale A et al. (2002). P53-mediated induction of Cox-2 counteracts p53- or genotoxic stress-induced apoptosis. EMBO J 21: 5635–5644.

    Article  CAS  Google Scholar 

  • Harris SL, Levine AJ . (2005). The p53 pathway: positive and negative feedback loops. Oncogene 24: 2899–2908.

    Article  CAS  Google Scholar 

  • Hida T, Kozaki K, Muramatsu H, Masuda A, Shimizu S, Mitsudomi T et al. (2000). Cyclooxygenase-2 inhibitor induces apoptosis and enhances cytotoxicity of various anticancer agents in non-small cell lung cancer cell lines. Clin Cancer Res 6: 2006–2011.

    CAS  Google Scholar 

  • Hosoi G, Hara J, Okamura T, Osugi Y, Ishihara S, Fukuzawa M et al. (1994). Low frequency of the p53 gene mutations in neuroblastoma. Cancer 73: 3087–3093.

    Article  CAS  Google Scholar 

  • Hsu AL, Ching TT, Wang DS, Song X, Rangnekar VM, Chen CS . (2000). The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 275: 11397–11403.

    Article  CAS  Google Scholar 

  • Imamura J, Bartram CR, Berthold F, Harms D, Nakamura H, Koeffler HP . (1993). Mutation of the p53 gene in neuroblastoma and its relationship with N-myc amplification. Cancer Res 53: 4053–4058.

    CAS  Google Scholar 

  • Inoue T, Wu L, Stuart J, Maki CG . (2005). Control of p53 nuclear accumulation in stressed cells. FEBS Lett 579: 4978–4984.

    Article  CAS  Google Scholar 

  • Isaacs JS, Saito S, Neckers LM . (2001). Requirement for HDM2 activity in the rapid degradation of p53 in neuroblastoma. J Biol Chem 276: 18497–18506.

    Article  CAS  Google Scholar 

  • Johnsen JI, Lindskog M, Ponthan F, Pettersen I, Elfman L, Orrego A et al. (2004). Cyclooxygenase-2 is expressed in neuroblastoma, and nonsteroidal anti-inflammatory drugs induce apoptosis and inhibit tumor growth in vivo. Cancer Res 64: 7210–7215.

    Article  CAS  Google Scholar 

  • Komuro H, Hayashi Y, Kawamura M, Hayashi K, Kaneko Y, Kamoshita S et al. (1993). Mutations of the p53 gene are involved in Ewing's sarcomas but not in neuroblastomas. Cancer Res 53: 5284–5288.

    CAS  Google Scholar 

  • Liu XH, Kirschenbaum A, Yu K, Yao S, Levine AC . (2005). Cyclooxygenase-2 suppresses hypoxia-induced apoptosis via a combination of direct and indirect inhibition of p53 activity in a human prostate cancer cell line. J Biol Chem 280: 3817–3823.

    Article  CAS  Google Scholar 

  • Look AT, Hayes FA, Shuster JJ, Douglass EC, Castleberry RP, Bowman LC et al. (1991). Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol 9: 581–591.

    Article  CAS  Google Scholar 

  • Lu W, Pochampally R, Chen L, Traidej M, Wang Y, Chen J . (2000). Nuclear exclusion of p53 in a subset of tumors requires MDM2 function. Oncogene 19: 232–240.

    Article  CAS  Google Scholar 

  • Mayo LD, Donner DB . (2001). A phosphatidylinositol 3-kinase/Akt pathway promotes translocation of Mdm2 from the cytoplasm to the nucleus. Proc Natl Acad Sci USA 98: 11598–11603.

    Article  CAS  Google Scholar 

  • Moll UM, LaQuaglia M, Benard J, Riou G . (1995). Wild-type p53 protein undergoes cytoplasmic sequestration in undifferentiated neuroblastomas but not in differentiated tumors. Proc Natl Acad Sci USA 92: 4407–4411.

    Article  CAS  Google Scholar 

  • Moos PJ, Edes K, Fitzpatrick FA . (2000). Inactivation of wild-type p53 tumor suppressor by electrophilic prostaglandins. Proc Natl Acad Sci USA 97: 9215–9220.

    Article  CAS  Google Scholar 

  • Nikolaev AY, Li M, Puskas N, Qin J, Gu W . (2003). Parc: a cytoplasmic anchor for p53. Cell 112: 29–40.

    Article  CAS  Google Scholar 

  • Oren M . (2003). Decision making by p53: life, death and cancer. Cell Death Differ 10: 431–442.

    Article  CAS  Google Scholar 

  • Parashar B, Latha Shankar S, O'Guin K, Butler J, Vikram B, Shafit-Zagardo B . (2005). Inhibition of human neuroblastoma cell growth by CAY10404, a highly selective Cox-2 inhibitor. J Neurooncol 71: 141–148.

    Article  CAS  Google Scholar 

  • Parashar B, Shafit-Zagardo B . (2006). Inhibition of human Neuroblastoma in SCID mice by low-dose of selective Cox-2 inhibitor Nimesulide. J Neurooncol 78: 129–134.

    Article  CAS  Google Scholar 

  • Rodriguez-Lopez AM, Xenaki D, Eden TO, Hickman JA, Chresta CM . (2001). MDM2 mediated nuclear exclusion of p53 attenuates etoposide-induced apoptosis in neuroblastoma cells. Mol Pharmacol 59: 135–143.

    Article  CAS  Google Scholar 

  • Roth J, Dobbelstein M, Freedman DA, Shenk T, Levine AJ . (1998). Nucleo-cytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J 17: 554–564.

    Article  CAS  Google Scholar 

  • Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM . (1999). A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18: 1660–1672.

    Article  CAS  Google Scholar 

  • Subbaramaiah K, Altorki N, Chung WJ, Mestre JR, Sampat A, Dannenberg AJ . (1999). Inhibition of cyclooxygenase-2 gene expression by p53. J Biol Chem 274: 10911–10915.

    Article  CAS  Google Scholar 

  • Swamy MV, Herzog CR, Rao CV . (2003). Inhibition of COX-2 in colon cancer cell lines by celecoxib increases the nuclear localization of active p53. Cancer Res 63: 5239–5242.

    CAS  PubMed  Google Scholar 

  • Thun MJ, Henley SJ, Patrono C . (2002). Nonsteroidal anti-inflammatory drugs as anticancer agents: mechanistic, pharmacologic, and clinical issues. J Natl Cancer Inst 94: 252–266.

    Article  CAS  Google Scholar 

  • Trifan OC, Durham WF, Salazar VS, Horton J, Levine BD, Zweifel BS et al. (2002). Cyclooxygenase-2 inhibition with celecoxib enhances antitumor efficacy and reduces diarrhea side effect of CPT-11. Cancer Res 62: 5778–5784.

    CAS  PubMed  Google Scholar 

  • Tweddle DA, Malcolm AJ, Cole M, Pearson AD, Lunec J . (2001). p53 cellular localization and function in neuroblastoma: evidence for defective G(1) arrest despite WAF1 induction in MYCN-amplified cells. Am J Pathol 158: 2067–2077.

    Article  CAS  Google Scholar 

  • Valsesia-Wittmann S, Magdeleine M, Dupasquier S, Garin E, Jallas AC, Combaret V et al. (2004). Oncogenic cooperation between H-Twist and N-Myc overrides failsafe programs in cancer cells. Cancer Cell 6: 625–630.

    Article  CAS  Google Scholar 

  • Vogan K, Bernstein M, Leclerc JM, Brisson L, Brossard J, Brodeur GM et al. (1993). Absence of p53 gene mutations in primary neuroblastomas. Cancer Res 53: 5269–5273.

    CAS  Google Scholar 

  • Vousden KH, Lu X . (2002). Live or let die: the cell's response to p53. Nat Rev Cancer 2: 594–604.

    Article  CAS  Google Scholar 

  • Wang X, Michael D, de Murcia G, Oren M . (2002). p53 Activation by nitric oxide involves down-regulation of Mdm2. J Biol Chem 277: 15697–15702.

    Article  CAS  Google Scholar 

  • Wang X, Zalcenstein A, Oren M . (2003). Nitric oxide promotes p53 nuclear retention and sensitizes neuroblastoma cells to apoptosis by ionizing radiation. Cell Death Differ 10: 468–476.

    Article  CAS  Google Scholar 

  • Waskewich C, Blumenthal RD, Li H, Stein R, Goldenberg DM, Burton J . (2002). Celecoxib exhibits the greatest potency amongst cyclooxygenase (COX) inhibitors for growth inhibition of COX-2-negative hematopoietic and epithelial cell lines. Cancer Res 62: 2029–2033.

    CAS  PubMed  Google Scholar 

  • Weber HO, Ludwig RL, Morrison D, Kotlyarov A, Gaestel M, Vousden KH . (2005). HDM2 phosphorylation by MAPKAP kinase 2. Oncogene 24: 1965–1972.

    Article  CAS  Google Scholar 

  • Winters ME, Mehta AI, Petricoin 3rd EF, Kohn EC, Liotta LA . (2005). Supra-additive growth inhibition by a celecoxib analogue and carboxyamido-triazole is primarily mediated through apoptosis. Cancer Res 65: 3853–3860.

    Article  CAS  Google Scholar 

  • Zhang Y, Xiong Y . (2001). Control of p53 ubiquitination and nuclear export by MDM2 and ARF. Cell Growth Differ 12: 175–186.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Irwin Lab for helpful comments and technical suggestions. We thank Drs Michael Ohh, David Malkin, and Annie Huang for critical review of the manuscript, Jennifer Nugent for technical assistance, and members of the lab of Drs David Kaplan and Freda Miller for assistance with primary cell cultures. This project is supported by The James Fund for Neuroblastoma Research at SickKids and the National Cancer Institute of Canada through funding from the Terry Fox Foundation. LL is supported in part by Restracomp (Research Institute, Hospital for Sick Children). DRK is a Canada Research Chair in Cancer and Neuroscience. MSI is Canada Research Chair in Cancer Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Irwin.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, L., Hansford, L., Cheng, L. et al. Cyclooxygenase inhibitors modulate the p53/HDM2 pathway and enhance chemotherapy-induced apoptosis in neuroblastoma. Oncogene 26, 1920–1931 (2007). https://doi.org/10.1038/sj.onc.1209981

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.onc.1209981

Keywords

This article is cited by

Search

Quick links