Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Elevated Mdm2 expression induces chromosomal instability and confers a survival and growth advantage to B cells

Abstract

Mdm2, a regulator of the p53 tumor suppressor, is frequently overexpressed in lymphomas, including lymphomas that have inactivated p53. However, the biological consequences of Mdm2 overexpression in lymphocytes are not fully resolved. Here, we report that increased expression of Mdm2 in B cells augmented proliferation and reduced susceptibility to p53-dependent apoptosis, which was due to inhibition of p53 and suppression of p21 expression. Notably, developing and mature B cells from Mdm2 transgenic mice had an increased frequency of chromosomal/chromatid breaks and/or aneuploidy. This Mdm2-mediated genome instability occurred at a similar frequency as that in B cells overexpressing the oncogene c-Myc, but the chromosomal instability was not further enhanced when Mdm2 and c-Myc were overexpressed together. Elevated Mdm2 expression alone increased the occurrence of B-cell transformation in vivo and cooperated with c-Myc overexpression, resulting in an acceleration of B-cell lymphomagenesis. In addition, the frequency of p53 mutations was reduced, but not eliminated, in lymphomas arising in Mdm2/Eμ-myc double transgenic mice. Therefore, increased Mdm2 expression facilitated B-cell lymphomagenesis, in part, through regulation of p53 by altering B-cell proliferation and susceptibility to apoptosis, and by inducing chromosomal instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S et al. (1985). The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature 318: 533–538.

    Article  CAS  PubMed  Google Scholar 

  • Alt JR, Bouska A, Fernandez MR, Cerny RL, Xiao H, Eischen CM . (2005). Mdm2 binds to Nbs1 at sites of DNA damage and regulates double strand break repair. J Biol Chem 280: 18771–18781.

    Article  CAS  PubMed  Google Scholar 

  • Alt JR, Greiner TC, Cleveland JL, Eischen CM . (2003). Mdm2 haplo-insufficiency profoundly inhibits Myc-induced lymphomagenesis. EMBO J 22: 1442–1450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barak Y, Juven T, Haffner R, Oren M . (1993). Mdm2 expression is induced by wild type p53 activity. EMBO J 12: 461–468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canman CE, Lim DS, Cimprich KA, Taya Y, Tamai K, Sakaguchi K et al. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281: 1677–1679.

    Article  CAS  PubMed  Google Scholar 

  • Capoulade C, Bressac-de Paillerets B, Lefrere I, Ronsin M, Feunteun J, Tursz T et al. (1998). Overexpression of MDM2, due to enhanced translation, results in inactivation of wild-type p53 in Burkitt's lymphoma cells. Oncogene 16: 1603–1610.

    Article  CAS  PubMed  Google Scholar 

  • Cross SM, Sanchez CA, Morgan CA, Schimke MK, Ramel S, Idzerda RL et al. (1995). A p53-dependent mouse spindle checkpoint. Science 267: 1353–1356.

    Article  CAS  PubMed  Google Scholar 

  • Digweed M, Sperling K . (2004). Nijmegen breakage syndrome: clinical manifestation of defective response to DNA double-strand breaks. DNA Repair (Amst) 3: 1207–1217.

    Article  CAS  Google Scholar 

  • Eischen CM, Alt JR, Wang P . (2004). Loss of one allele of ARF rescues Mdm2 haploinsufficiency effects on apoptosis and lymphoma development. Oncogene 23: 8931–8940.

    Article  CAS  PubMed  Google Scholar 

  • Eischen CM, Roussel MF, Korsmeyer SJ, Cleveland JL . (2001a). Bax loss impairs Myc-induced apoptosis and circumvents the selection of p53 mutations during Myc-mediated lymphomagenesis. Mol Cell Biol 21: 7653–7662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL . (1999). Disruption of the ARF–Mdm2–p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev 13: 2658–2669.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eischen CM, Woo D, Roussel MF, Cleveland JL . (2001b). Apoptosis triggered by Myc-induced suppression of Bcl-X(L) or Bcl-2 is bypassed during lymphomagenesis. Mol Cell Biol 21: 5063–5070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco S, Alt FW, Manis JP . (2006). Pathways that suppress programmed DNA breaks from progressing to chromosomal breaks and translocations. DNA Repair (Amst) 5: 1030–1041.

    Article  CAS  Google Scholar 

  • Ghobrial IM, McCormick DJ, Kaufmann SH, Leontovich AA, Loegering DA, Dai NT et al. (2005). Proteomic analysis of mantle-cell lymphoma by protein microarray. Blood 105: 3722–3730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumy-Pause F, Wacker P, Sappino AP . (2004). ATM gene and lymphoid malignancies. Leukemia 18: 238–242.

    Article  CAS  PubMed  Google Scholar 

  • Honda R, Tanaka H, Yasuda H . (1997). Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett 420: 25–27.

    Article  CAS  PubMed  Google Scholar 

  • Jones SN, Hancock AR, Vogel H, Donehower LA, Bradley A . (1998). Overexpression of Mdm2 in mice reveals a p53-independent role for Mdm2 in tumorigenesis. Proc Natl Acad Sci USA 95: 15608–15612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine AJ, Hu W, Feng Z . (2006). The P53 pathway: what questions remain to be explored? Cell Death Differ 13: 1027–1036.

    Article  CAS  PubMed  Google Scholar 

  • Lundgren K, Montes de Oca Luna R, McNeill YB, Emerick EP, Spencer B, Barfield CR et al. (1997). Targeted expression of MDM2 uncouples S phase from mitosis and inhibits mammary gland development independent of p53. Genes Dev 11: 714–725.

    Article  CAS  PubMed  Google Scholar 

  • Martins CP, Brown-Swigart L, Evan GI . (2006). Modeling the therapeutic efficacy of p53 restoration in tumors. Cell 127: 1323–1334.

    Article  CAS  PubMed  Google Scholar 

  • Momand J, Zambetti GP, Olson DC, George D, Levine AJ . (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69: 1237–1245.

    Article  CAS  PubMed  Google Scholar 

  • Strasser A, Harris AW, Cory S . (1993). E mu-bcl-2 transgene facilitates spontaneous transformation of early pre-B and immunoglobulin-secreting cells but not T cells. Oncogene 8: 1–9.

    CAS  PubMed  Google Scholar 

  • Vafa O, Wade M, Kern S, Beeche M, Pandita TK, Hampton GM et al. (2002). c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol Cell 9: 1031–1044.

    Article  CAS  PubMed  Google Scholar 

  • Vassilev LT . (2007). MDM2 inhibitors for cancer therapy. Trends Mol Med 13: 23–31.

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Greiner TC, Lushnikova T, Eischen CM . (2006). Decreased Mdm2 expression inhibits tumor development induced by loss of ARF. Oncogene 25: 3708–3718.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Ichikawa A, Saito H, Hotta T . (1996). Overexpression of the MDM2 oncogene in leukemia and lymphoma. Leuk Lymphoma 21: 391–397.

    Article  CAS  PubMed  Google Scholar 

  • Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D . (1999). Nucleolar ARF sequesters Mdm2 and activates p53. Nat Cell Biol 1: 20–26.

    CAS  PubMed  Google Scholar 

  • Wilda M, Bruch J, Harder L, Rawer D, Reiter A, Borkhardt A et al. (2004). Inactivation of the ARF–MDM-2–p53 pathway in sporadic Burkitt's lymphoma in children. Leukemia 18: 584–588.

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Bayle JH, Olson D, Levine AJ . (1993). The p53–mdm-2 autoregulatory feedback loop. Genes Dev 7: 1126–1132.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Randy Fields, Dr Silvia Plaza, Greg Cochran, and Jane Kennedy for skilled technical assistance; Drs Jane Meza and William DuPont for statistical analyses. This work was supported by NCI Grants CA098139 and CA117935 (CME). TCG is a Lymphoma Research Foundation Mantle Cell Lymphoma Grantee. CME is a Leukemia & Lymphoma Society Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Eischen.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, P., Lushnikova, T., Odvody, J. et al. Elevated Mdm2 expression induces chromosomal instability and confers a survival and growth advantage to B cells. Oncogene 27, 1590–1598 (2008). https://doi.org/10.1038/sj.onc.1210788

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.onc.1210788

Keywords

This article is cited by

Search

Quick links