Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins

Abstract

The restriction of intermingling between specific cell populations is crucial for the maintenance of organized patterns during development. A striking example is the restriction of cell mixing between segments in the insect epidermis1 and the vertebrate hindbrain2 that may enable each segment to maintain a distinctidentity. In the hindbrain, this is a result of different adhesive properties of odd- and even-numbered segments (rhombomeres)3,4, but an adhesion molecule with alternating segmental expression has not been found. However, blocking experiments suggest that Eph-receptor tyrosine kinases may be required for the segmental restriction of cells5. Eph receptors and their membrane-bound ligands, ephrins, are expressed in complementary rhombomeres6 and, by analogy with their roles in axon pathfinding7,8, could mediate cell repulsion at boundaries. Remarkably, transmembrane ephrins can themselves transduce signals9,10, raising the possibility that bi-directional signalling occurs between adjacent ephrin- and Eph-receptor-expressing cells. We report here that mosaic activation of Eph receptors leads to sorting of cells to boundaries in odd-numbered rhombomeres, whereas mosaic activation of ephrins results in sorting to boundaries in even-numbered rhombomeres. These data implicate Eph receptors and ephrins in the segmental restriction of cell intermingling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell sorting after mosaic expression of ephrin-B2, a, Left side; diagram illustrating activation of EphA4 and EphB receptors (R) by ephrin-B2 ligand (L).
Figure 2: Activation of EphA4 and ephrin-B2 by truncated ligands.
Figure 3: Cell sorting after mosaic expression of truncated EphA4.
Figure 4: Sorting of cells adjacent to rhombomere boundaries.
Figure 5: Time-lapse analysis of cell sorting.

Similar content being viewed by others

References

  1. Lawrence, P. A. The cellular basis of segmentation in insects. Cell 26, 3–10 (1981).

    Article  CAS  PubMed  Google Scholar 

  2. Fraser, S., Keynes, R. & Lumsden, A. Segmentation in the chick embryo hindbrain is defined by cell lineage restrictions. Nature 344, 431–435 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Guthrie, S., Prince, V. & Lumsden, A. Selective dispersal of avian rhombomere cells in orthotopic and heterotopic grafts. Development 118, 527–538 (1993).

    CAS  PubMed  Google Scholar 

  4. Wizenmann, A. & Lumsden, A. Segregation of rhombomeres by differential chemoaffinity. Mol. Cell. Neurosci. 9, 448–459 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Xu, Q., Alldus, G., Hlder, N. & Wilkinson, D. G. Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. Development 121, 4005–4016 (1995).

    CAS  PubMed  Google Scholar 

  6. Xu, Q. & Wilkinson, D. G. Eph-related receptors and their ligands: mediators of contact dependent cell interactions. J. Mol. Med. 75, 576–586 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Flanagan, J. G. & Vanderhaeghen, P. The ephrins and Eph receptors in neural development. Annu. Rev. Neurobiol. 21, 309–345 (1998).

    Article  CAS  Google Scholar 

  8. O'Leary, D. D. M. & Wilkinson, D. G. Eph receptors and ephrins in neural development. Curr. Opin. Neurobiol. 9, 65–73 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Holland, S. J. et al. Bidirectional signalling through the Eph-family receptor Nuk and its transmembrane ligands. Nature 383, 722–725 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Bruckner, K., Pasquale, E. B. & Klein, R. Tyrosine phosphorylation of transmembrane ligands for Eph receptors. Science 275, 1640–1643 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Gale, N. W. et al. Eph receptors and ligands comprise two major specificity subclasses, and are reciprocally compartmentalised during embryogenesis. Neuron 17, 9–19 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Eph Nomenclature Committee. Unified nomenclature for Eph family receptors and their ligands, theephrins. Cell 90, 403–404 (1997).

    Article  Google Scholar 

  13. Ellis, C. et al. Ajuxtamembrane autophosphorylation site in the Eph family receptor tyrosine kinase, Sek, mediates high affinity interaction with p59fyn. Oncogene 12, 1727–1736 (1996).

    CAS  PubMed  Google Scholar 

  14. Theil, T. et al. Segmental expression of the EphA4 (Sek-1) gene is under direct transcriptional control of Krox-20. Development 125, 443–452 (1998).

    CAS  PubMed  Google Scholar 

  15. Woo, K. & Fraser, S. E. Order and coherence in the fate map of the zebrafish nervous system. Development 121, 2595–2609 (1995).

    CAS  PubMed  Google Scholar 

  16. Townes, P. L. & Holfreter, J. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. 128, 53–120 (1955).

    Article  Google Scholar 

  17. Steinberg, M. S. Does differential adhesion govern self-assembly processes in histogenesis? Equilibrium processes and the emergence of a hierarchy among populations of embryonic cells. J. Exp. Zool. 173, 395–434 (1970).

    Article  CAS  PubMed  Google Scholar 

  18. Nose, A., Nagafuchi, A. & Takeichi, M. Expressed recombinant cadherins mediate cell sorting in model systems. Cell 54, 993–1001 (1988).

    Article  CAS  PubMed  Google Scholar 

  19. Friedlander, D. R., Mege, R. M., Cunningham, B. A. & Edelman, G. M. Cell sorting-out is modulated by both the specificity and amount of different cell adhesion molecules. Proc. Natl Acad. Sci. USA 86, 7043–7047 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Godt, D. & Tepass, U. Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395, 387–391 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Gonzalez-Reyes, A. & St Johnston, D. The Drosophila A-P axis is polarised by the cadherin-mediated positioning of the oocyte. Development 125, 3635–3644 (1998).

    CAS  PubMed  Google Scholar 

  22. Meima, L. et al. AL-1-induced growth cone collapse of rat cortical neurons is correlated with REK7 expression and rearrangement of the actin cytoskeleton. Eur. J. Neurosci. 9, 177–188 (1997).

    Article  CAS  PubMed  Google Scholar 

  23. Zisch, A. H. et al. Tyrosine phosphorylation of L1 family adhesion molecules: implication of the Eph kinase Cek5. J. Neurosci. Res. 47, 655–665 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Lumsden, A. & Keynes, R. Segmental patterns of neuronal development in the chick hindbrain. Nature 337, 424–428 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Heyman, I., Kent, A. & Lumsden, A. Cellular morphology and extracellular space at rhombomere boundaries in the chick embryo hindbrain. Dev. Dynamics 198, 241–253 (1993).

    Article  CAS  Google Scholar 

  26. Xu, Q., Hlder, N., Patient, R. & Wilson, S. W. Spatially regulated expression of three receptor tyrosine kinase genes during gastrulation in the zebrafish. Development 120, 287–299 (1994).

    CAS  PubMed  Google Scholar 

  27. Irving, C., Nieto, M. A., DasGupta, R., Charnay, B. & Wilkinson, D. G. Progressive spatial restriction of Sek-1 and Krox-20 gene expression during hindbrain segmentation. Dev. Biol. 173, 26–38 (1996).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Gale and G. Yancopoulos for ephrin clones, M. Henkemeyer for the EphB2 clone and S. Fraser, J. P. Vincent, R. Krumlauf and P. Trainor for discussions. This work was supported by the MRC, an EC Biotechnology grant and an EMBO Fellowship to G.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G. Wilkinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Q., Mellitzer, G., Robinson, V. et al. In vivo cell sorting in complementary segmental domains mediated by Eph receptors and ephrins. Nature 399, 267–271 (1999). https://doi.org/10.1038/20452

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/20452

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing