Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem

Abstract

Voltage-dependent calcium (Ca2+) channels are involved in many specialized cellular functions1,2,3, and are controlled by intracellular signals such as heterotrimeric G-proteins4, protein kinases5,6 and calmodulin (CaM)7,8. However, the direct role of small G-proteins in the regulation of Ca2+ channels is unclear. We report here that the GTP-bound form of kir/Gem, identified originally as a Ras-related small G-protein that binds CaM9,10,11, inhibits high-voltage-activated Ca2+ channel activities by interacting directly with the β-subunit. The reduced channel activities are due to a decrease in α1-subunit expression at the plasma membrane. The binding of Ca2+/CaM to kir/Gem is required for this inhibitory effect by promoting the cytoplasmic localization of kir/Gem. Inhibition of L-type Ca2+ channels by kir/Gem prevents Ca2+-triggered exocytosis in hormone-secreting cells. We propose that the small G-protein kir/Gem, interacting with β-subunits, regulates Ca2+ channel expression at the cell surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of kir/Gem and its interaction with β-subunits.
Figure 2: Effects of kir/Gem on IV relationships of Ca2+ channel currents in Xenopus oocytes and in BHK cells.
Figure 3: Subcellular localization of α11.2-subunits, wild-type kir/Gem and the W269G mutant.
Figure 4: Effects of wild-type (WT) kir/Gem and W269G mutant in hormone-secreting cells.
Figure 5: Model of regulation of Ca2+ channel expression at the cell surface by kir/Gem.

Similar content being viewed by others

References

  1. Wheeler, D. B., Randall, A. & Tsien, R. W. Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264, 107–111 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Artalejo, C. R., Adams, M. E. & Fox, A. P. Three types of Ca2+ channels trigger secretion with different efficacies in chromaffin cells. Nature 367, 72–76 (1994).

    Article  ADS  CAS  Google Scholar 

  3. Hardingham, G. E., Chawla, S., Johnson, C. M. & Bading, H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature 385, 260–265 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Dolphin, A. Mechanism of modulation of voltage-dependent calcium channels by G proteins. J. Physiol. 506, 3–11 (1998).

    Article  CAS  Google Scholar 

  5. Dolphin, A. Facilitation of Ca2+ current in excitable cells. Trends Neurosci. 19, 35–43 (1996).

    Article  CAS  Google Scholar 

  6. Dzhura, I., Wu, Y., Colbran, R. J., Balser, J. R. & Anderson, M. E. Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nature Cell Biol. 2, 173–177 (2000).

    Article  CAS  Google Scholar 

  7. Lee, A. et al. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399, 155–159 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Zühlke, R. D., Pitt, G. S., Deisseroth, K., Tsien, R. W. & Reuter, H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 399, 159–162 (1999).

    Article  ADS  Google Scholar 

  9. Maguire, J. et al. Gem: An induced, immediate early protein belonging to the Ras family. Science 265, 241–244 (1994).

    Article  ADS  CAS  Google Scholar 

  10. Cohen, L. et al. Transcriptional activation of ras-like gene (kir) by oncogenic tyrosine kinases. Proc. Natl Acad. Sci. USA 91, 12448–12452 (1994).

    Article  ADS  CAS  Google Scholar 

  11. Fischer, R., Wei, Y., Anagli, J. & Berchtold, M. W. Calmodulin binds to and inhibits GTP binding of the Ras-like GTPase Kir/Gem. J. Biol. Chem. 271, 25067–25070 (1996).

    Article  CAS  Google Scholar 

  12. Ertel, E. A. et al. Nomenclature of voltage-gated calcium channels. Neuron 25, 533–535 (2000).

    Article  CAS  Google Scholar 

  13. Walker, D. & De Waard, M. Subunit interaction sites in voltage-dependent Ca2+ channels: role in channel function. Trends Neurosci. 21, 148–154 (1998).

    Article  CAS  Google Scholar 

  14. Isom, L. L., De Jongh, K. S. & Catterall, W. A. Auxiliary subunits of voltage-gated ion channels. Neuron 12, 1183–1194 (1994).

    Article  CAS  Google Scholar 

  15. Cherfils, J. & Chardin, P. GEFs: structural basis for their activation of small GTP-binding protein. Trends Biochem. Sci. 24, 306–311 (1999).

    Article  CAS  Google Scholar 

  16. Williams, M. E. et al. Structure and functional expression of α1-, α2-, and β-subunits of a novel human neuronal calcium channel subtype. Neuron 8, 71–84 (1992).

    Article  CAS  Google Scholar 

  17. Ihara, Y. et al. Molecular diversity and functional characterization of voltage-dependent calcium channels (CACN4) expressed in pancreatic β-cells. Mol. Endocrinol. 9, 121–130 (1995).

    CAS  PubMed  Google Scholar 

  18. Wes, P. D., Yu, M. & Montell, C. RIC, a calmodulin-binding Ras-like GTPase. EMBO J. 15, 5839–5848 (1996).

    Article  CAS  Google Scholar 

  19. Mikami, A. et al. Primary structure and functional expression of cardiac dihydropyridine-sensitive calcium channel. Nature 340, 230–233 (1989).

    Article  ADS  CAS  Google Scholar 

  20. Niidome, T. et al. Stable expression of the neuronal BI (class A) calcium channel in baby hamster kidney cells. Biochem. Biophys. Res. Commun. 203, 1821–1827 (1994).

    Article  CAS  Google Scholar 

  21. Wakamori, M. et al. Functional characterization of ion permeation pathway in the N-type Ca2+ channel. J. Neurophysiol. 79, 622–634 (1998).

    Article  CAS  Google Scholar 

  22. Chien, A. J. et al. Roles of a membrane-localized β-subunit in the formation and targeting of functional L-type Ca2+ channels. J. Biol. Chem. 270, 30036–30044 (1995).

    Article  CAS  Google Scholar 

  23. Brice, N. L. et al. Importance of the different β-subunits in the membrane expression of the α1A and α2 calcium channel subunits: studies using a depolarization-sensitive α1A antibody. Eur. J. Neurosci. 9, 749–759 (1997).

    Article  CAS  Google Scholar 

  24. Plummer, M. R., Logothetis, D. E. & Hess, P. Elementary properties and pharmacological sensitivities of calcium channels in mammalian peripheral neurons subunit. Neuron 2, 1453–1463 (1989).

    Article  CAS  Google Scholar 

  25. Ozaki, N. et al. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nature Cell Biol. 2, 805–811 (2000).

    Article  CAS  Google Scholar 

  26. Bichet, D. et al. The I-II loop of the Ca2+ channel α1 subunit contains an endoplasmic reticulum retention signal antagonized by the β subunit. Neuron 25, 177–190 (2000).

    Article  CAS  Google Scholar 

  27. Berridge, M. J., Bootman, M. D. & Lipp, P. Calcium—a life and death signal. Nature 395, 645–648 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Béguin, P., Nagashima, K., Nishimura, M., Gonoi, T. & Seino, S. PKA-mediated phosphorylation of the human KATP channel: separate roles of Kir6.2 and SUR1 subunit phosphorylation. EMBO J. 18, 4722–4732 (1999).

    Article  Google Scholar 

  29. Kawaki, J. et al. Unresponsiveness to glibenclamide during chronic treatment induced by reduction of ATP-sensitive K+ channel activity. Diabetes 48, 2001–2006 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Tanabe and Y. Mori for rabbit α11.2 cDNA and BHK cell lines expressing Ca2+ channels, respectively; and Y. Takai for reading the manuscript. This work was supported by a Grant-in-Aid for Creative Basic Research from the Ministry of Education, Science, Sports and Culture Japan; by Scientific Research Grants from the Ministry of Health and Welfare, Japan; and by grants from Novo Nordisk Pharma, Japan; Yamanouchi Foundation for Research on Metabolic Disorders, Japan; and Swiss National Fund for Scientific Research. P.B. and K.N. are supported by Japan Society for the Promotion of Science Fellowships for Foreign Researchers and for Young Scientists, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Seino.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Béguin, P., Nagashima, K., Gonoi, T. et al. Regulation of Ca2+ channel expression at the cell surface by the small G-protein kir/Gem. Nature 411, 701–706 (2001). https://doi.org/10.1038/35079621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/35079621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing