Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Superplastic carbon nanotubes

Conditions have been discovered that allow extensive deformation of rigid single-walled nanotubes.

Abstract

The theoretical maximum tensile strain — that is, elongation — of a single-walled carbon nanotube is almost 20%1,2, but in practice only 6%3,4 is achieved. Here we show that, at high temperatures, individual single-walled carbon nanotubes can undergo superplastic deformation, becoming nearly 280% longer and 15 times narrower before breaking. This superplastic deformation is the result of the nucleation and motion of kinks in the structure, and could prove useful in helping to strengthen and toughen ceramics and other nanocomposites at high temperatures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In situ tensile elongation of individual single-walled carbon nanotubes viewed in a high-resolution transmission electron microscope.

Similar content being viewed by others

References

  1. Zhao, Q. Z., Nardelli, M. B. & Bernholc, J. Phys. Rev. B 65, 144105 (2002).

    Article  ADS  Google Scholar 

  2. Nardelli, M. B., Yakobson, B. I. & Bernholc, J. Phys. Rev. B 57, R4277–R4280 (1998).

    Article  ADS  Google Scholar 

  3. Walters, D. A. et al. Appl. Phys. Lett. 74, 3803–3805 (1999).

    Article  CAS  ADS  Google Scholar 

  4. Yu, M. F., Files, B. S., Arepalli, S. & Ruoff, R. S. Phys. Rev. Lett. 84, 5552–5555 (2000).

    Article  CAS  ADS  Google Scholar 

  5. Huang, J. Y. et al. Phys. Rev. Lett. 94, 236802 (2005).

    Article  CAS  ADS  Google Scholar 

  6. Yu, M. F. et al. Science 287, 637–640 (2000).

    Article  CAS  ADS  Google Scholar 

  7. Nardelli, M. B., Yakobson, B. I. & Bernholc, J. Phys. Rev. Lett. 81, 4656–4659 (1998).

    Article  CAS  ADS  Google Scholar 

  8. Orlikowski, D., Nardelli, M. B., Bernholc, J. & Roland, C. Phys. Rev. Lett. 83, 4132–4135 (1999).

    Article  CAS  ADS  Google Scholar 

  9. Calvert, P. Nature 399, 210–211 (1999).

    Article  CAS  ADS  Google Scholar 

  10. Zhan, G. D., Kuntz, J. D., Wan, J. L. & Mukherjee, A. K. Nature Mater. 2, 38–42 (2003).

    Article  CAS  ADS  Google Scholar 

  11. Baughman, R. H., Zakhidov, A. A. & de Heer, W. A. Science 297, 787–792 (2002).

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary movie

An in situ HRTEM movie shows a kink that is emitted from the upper junction between the double-walled carbon nanotube segment and the multiwalled carbon nanotube, propagates along the nanotube, and finally disappears at the lower junction. The bias is 2.4 V and the current is 155 µA during the kink motion. The images are acquired with a rate of 3 frames/s and are displayed with 2x2 speed. The image size is 86x86 nm2. (MOV 4115 kb)

Supplementary Figure

(DOC 79 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, J., Chen, S., Wang, Z. et al. Superplastic carbon nanotubes. Nature 439, 281 (2006). https://doi.org/10.1038/439281a

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/439281a

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing