Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature
  • Published:

Replicating genotype–phenotype associations

What constitutes replication of a genotype–phenotype association, and how best can it be achieved?

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linkage disequilbrium across the region containing SNPs associated with breast cancer in FGFR2.

References

  1. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 431, 931–945 (2004).

  2. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).

  3. Hinds, D. A. et al. Whole-genome patterns of common DNA variation in three human populations. Science 307, 1072–1079 (2005).

    Article  ADS  CAS  Google Scholar 

  4. Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).

    Article  CAS  Google Scholar 

  5. Ioannidis, J. P., Ntzani, E. E., Trikalinos, T. A. & Contopoulos-Ioannidis, D. G. Replication validity of genetic association studies. Nature Genet. 29, 306–309 (2001).

    Article  CAS  Google Scholar 

  6. Lohmueller, K. E., Pearce, C. L., Pike, M., Lander, E. S. & Hirschhorn, J. N. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nature Genet. 33, 177–182 (2003).

    Article  CAS  Google Scholar 

  7. Ioannidis, J. P. Common genetic variants for breast cancer: 32 largely refuted candidates and larger prospects. J. Natl Cancer Inst. 98, 1350–1353 (2006).

    Article  CAS  Google Scholar 

  8. Freely associating. Nature Genet. 22, 1–2 (1999).

  9. Todd, J. A. Statistical false positive or true disease pathway? Nature Genet. 38, 731–733 (2006).

    Article  CAS  Google Scholar 

  10. Neale, B. M. & Sham, P. C. The future of association studies: gene-based analysis and replication. Am. J. Hum. Genet. 75, 353–362 (2004).

    Article  CAS  Google Scholar 

  11. Clark, A. G., Boerwinkle, E., Hixson, J. & Sing, C. F. Determinants of the success of whole-genome association testing. Genome Res. 15, 1463–1467 (2005).

    Article  CAS  Google Scholar 

  12. Freimer, N. B. & Sabatti, C. Human genetics: variants in common diseases. Nature 445, 828–830 (2007).

    Article  ADS  CAS  Google Scholar 

  13. Altshuler, D. et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nature Genet. 26, 76–80 (2000).

    Article  CAS  Google Scholar 

  14. Field, S. F. et al. Analysis of the type 2 diabetes gene, TCF7L2, in 13,795 type 1 diabetes cases and control subjects. Diabetologia 50, 212–213 (2007).

    Article  CAS  Google Scholar 

  15. Grant, S. F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nature Genet. 38, 320–323 (2006).

    Article  ADS  CAS  Google Scholar 

  16. Groves, C. J. et al. Association analysis of 6,736 U.K. subjects provides replication and confirms TCF7L2 as a type 2 diabetes susceptibility gene with a substantial effect on individual risk. Diabetes 55, 2640–2644 (2006).

    Article  CAS  Google Scholar 

  17. Saxena, R. et al. Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. Diabetes 55, 2890–2895 (2006).

    Article  CAS  Google Scholar 

  18. Helgason, A. et al. Refining the impact of TCF7L2 gene variants on type 2 diabetes and adaptive evolution. Nature Genet. 39, 218–225 (2007).

    Article  CAS  Google Scholar 

  19. Sladek, R. et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445, 881–885 (2007).

    Article  ADS  CAS  Google Scholar 

  20. Hugot, J. P. et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 411, 599–603 (2001).

    Article  ADS  CAS  Google Scholar 

  21. Ogura, Y. et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 411, 603–606 (2001).

    Article  ADS  CAS  Google Scholar 

  22. Economou, M., Trikalinos, T. A., Loizou, K. T., Tsianos, E. V. & Ioannidis, J. P. Differential effects of NOD2 variants on Crohn's disease risk and phenotype in diverse populations: a metaanalysis. Am. J. Gastroenterol. 99, 2393–2404 (2004).

    Article  CAS  Google Scholar 

  23. Edwards, A. O. et al. Complement factor H polymorphism and age-related macular degeneration. Science 308, 421–424 (2005).

    Article  ADS  CAS  Google Scholar 

  24. Hageman, G. S. et al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl Acad. Sci. USA 102, 7227–7232 (2005).

    Article  ADS  CAS  Google Scholar 

  25. Klein, R. J. et al. Complement factor H polymorphism in age-related macular degeneration. Science 308, 385–389 (2005).

    Article  ADS  CAS  Google Scholar 

  26. Haines, J. L. et al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308, 419–421 (2005).

    Article  ADS  CAS  Google Scholar 

  27. Freedman, M. L. et al. Admixture mapping identifies 8q24 as a prostate cancer risk locus in African-American men. Proc. Natl Acad. Sci. USA 103, 14068–14073 (2006).

    Article  ADS  CAS  Google Scholar 

  28. Amundadottir, L. T. et al. A common variant associated with prostate cancer in European and African populations. Nature Genet. 38, 652–658 (2006).

    Article  CAS  Google Scholar 

  29. Gudmundsson, J. et al. Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nature Genet. 39, 631–637 (2007).

    Article  CAS  Google Scholar 

  30. Haiman, C. A. et al. Multiple regions within 8q24 independently affect risk for prostate cancer. Nature Genet. 39, 638–644 (2007).

    Article  CAS  Google Scholar 

  31. Yeager, M. et al. Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nature Genet. 39, 645–649 (2007).

    Article  CAS  Google Scholar 

  32. Colhoun, H. M., McKeigue, P. M. & Davey, S. G. Problems of reporting genetic associations with complex outcomes. Lancet 361, 865–872 (2003).

    Article  Google Scholar 

  33. Ioannidis, J. P., Trikalinos, T. A. & Khoury, M. J. Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases. Am. J. Epidemiol. 164, 609–614 (2006).

    Article  Google Scholar 

  34. Straub, R. E. et al. Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am. J. Hum. Genet. 71, 337–348 (2002).

    Article  CAS  Google Scholar 

  35. Van Den, B. A. et al. The DTNBP1 (dysbindin) gene contributes to schizophrenia, depending on family history of the disease. Am. J. Hum. Genet. 73, 1438–1443 (2003).

    Article  Google Scholar 

  36. Bray, N. J. et al. Haplotypes at the dystrobrevin binding protein 1 (DTNBP1) gene locus mediate risk for schizophrenia through reduced DTNBP1 expression. Hum. Mol. Genet. 14, 1947–1954 (2005).

    Article  CAS  Google Scholar 

  37. Funke, B. et al. Association of the DTNBP1 locus with schizophrenia in a U.S. population. Am. J. Hum. Genet. 75, 891–898 (2004).

    Article  CAS  Google Scholar 

  38. Kirov, G. et al. Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biol. Psychiatry 55, 971–975 (2004).

    Article  CAS  Google Scholar 

  39. Mutsuddi, M. et al. Analysis of high-resolution HapMap of DTNBP1 (Dysbindin) suggests no consistency between reported common variant associations and schizophrenia. Am. J. Hum. Genet. 79, 903–909 (2006).

    Article  CAS  Google Scholar 

  40. Herbert, A. et al. A common genetic variant is associated with adult and childhood obesity. Science 312, 279–283 (2006).

    Article  ADS  CAS  Google Scholar 

  41. Hall, D. H., Rahman, T., Avery, P. J. & Keavney, B. INSIG-2 promoter polymorphism and obesity related phenotypes: association study in 1428 members of 248 families. BMC Med. Genet. 7, 83 (2006).

    Article  Google Scholar 

  42. Rosskopf, D. et al. Comment on 'A common genetic variant is associated with adult and childhood obesity'. Science 315, 187 (2007).

    Article  ADS  CAS  Google Scholar 

  43. Dina, C. et al. Comment on 'A common genetic variant is associated with adult and childhood obesity'. Science 315, 187 (2007).

    Article  ADS  CAS  Google Scholar 

  44. Loos, R. J., Barroso, I., O'rahilly, S. & Wareham, N. J. Comment on 'A common genetic variant is associated with adult and childhood obesity'. Science 315, 187 (2007).

    Article  ADS  CAS  Google Scholar 

  45. Gretarsdottir, S., Gulcher, J., Thorleifsson, G., Kong, A. & Stefansson, K. Comment on the phosphodiesterase 4D replication study by Bevan et al. Stroke 36, 1824 (2005).

    Article  Google Scholar 

  46. Rosand, J., Bayley, N., Rost, N. & de Bakker, P. I. Many hypotheses but no replication for the association between PDE4D and stroke. Nature Genet. 38, 1091–1092 (2006).

    Article  CAS  Google Scholar 

  47. Manolio, T. A., Bailey-Wilson, J. E. & Collins, F. S. Genes, environment and the value of prospective cohort studies. Nature Rev. Genet. 7, 812–820 (2006).

    Article  CAS  Google Scholar 

  48. Spielman, R. S. & Ewens, W. J. The TDT and other family-based tests for linkage disequilibrium and association. Am. J. Hum. Genet. 59, 983–989 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Roeder, K., Bacanu, S. A., Wasserman, L. & Devlin, B. Using linkage genome scans to improve power of association in genome scans. Am. J. Hum. Genet. 78, 243–252 (2006).

    Article  CAS  Google Scholar 

  50. Wacholder, S., Chanock, S., Garcia-Closas, M., El Ghormli, L. & Rothman, N. Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J. Natl Cancer Inst. 96, 434–442 (2004).

    Article  Google Scholar 

  51. Risch, N. & Merikangas, K. The future of genetic studies of complex human diseases. Science 273, 1516–1517 (1996).

    Article  ADS  CAS  Google Scholar 

  52. Risch, N. J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).

    Article  CAS  Google Scholar 

  53. Angell, M. The interpretation of epidemiologic studies. N. Engl. J. Med. 323, 823–825 (1990).

    Article  CAS  Google Scholar 

  54. Clarke, R. et al. Lymphotoxin-α gene and risk of myocardial infarction in 6,928 cases and 2,712 controls in the ISIS case-control study. PLoS Genet. 2, e107 (2006).

  55. Zollner, S. & Pritchard, J. Overcoming the winner's curse: estimating penetrance parameters from case-control. Am. J. Hum. Genet. 80, 605–615 (2007).

    Article  CAS  Google Scholar 

  56. Rothman, N. et al. Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the InterLymph Consortium. Lancet Oncol. 7, 27–38 (2006).

    Article  CAS  Google Scholar 

  57. Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 20, 1183–1197 (1997).

  58. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E and beta carotene for age-related cataract and vision loss. AREDS report no. 9. Arch. Ophthalmol. 119, 1439–1452 (2001).

  59. Freimer, N. & Sabatti, C. The human phenome project. Nature Genet. 34, 15–21 (2003).

    Article  CAS  Google Scholar 

  60. Flint, J. & Munafo, M. R. The endophenotype concept in psychiatric genetics. Psychol. Med. 37, 163–180 (2007).

    Article  Google Scholar 

  61. Wacholder, S., Rothman, N. & Caporaso, N. Population stratification in epidemiologic studies of common genetic variants and cancer: quantification of bias. J. Natl Cancer Inst. 92, 1151–1158 (2000).

    Article  CAS  Google Scholar 

  62. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nature Genet. 38, 904–909 (2006).

    Article  CAS  Google Scholar 

  63. Chandak, G. R. et al. Common variants in the TCF7L2 gene are strongly associated with type 2 diabetes mellitus in the Indian population. Diabetologia 50, 63–67 (2007).

    Article  CAS  Google Scholar 

  64. Horikoshi, M. et al. A genetic variant of the transcription factor 7-like 2 gene is associated with risk of type 2 diabetes in the Japanese population. Diabetologica 50, 747–751 (2007).

    Article  CAS  Google Scholar 

  65. Duerr, R. H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  ADS  CAS  Google Scholar 

  66. Maraganore, D. M. et al. High-resolution whole-genome association study of Parkinson disease. Am. J. Hum. Genet. 77, 685–693 (2005).

    Article  CAS  Google Scholar 

  67. Myers, D. R. Considerations for genomewide association studies in Parkinson disease. Am. J. Hum. Genet. 78, 1081–1082 (2006).

    Article  CAS  Google Scholar 

  68. Clarimon, J. et al. Conflicting results regarding the semaphorin gene (SEMA5A) and the risk for Parkinson disease. Am. J. Hum. Genet. 78, 1082–1084 (2006).

    Article  CAS  Google Scholar 

  69. Farrer, M. J. et al. Genomewide association, Parkinson disease, and PARK10. Am. J. Hum. Genet. 78, 1084–1088 (2006).

    Article  CAS  Google Scholar 

  70. Goris, A. et al. No evidence for association with Parkinson disease for 13 single-nucleotide polymorphisms identified by whole-genome association screening. Am. J. Hum. Genet. 78, 1088–1090 (2006).

    Article  CAS  Google Scholar 

  71. Li, Y. et al. A case-control association study of the 12 single-nucleotide polymorphisms implicated in Parkinson disease by a recent genome scan. Am. J. Hum. Genet. 78, 1090–1092 (2006).

    Article  CAS  Google Scholar 

  72. Patterson, M. & Cardon, L. Replication publication. PLoS. Biol. 3, e327 (2005).

    Article  Google Scholar 

  73. Hunter, D. J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nature Genet. Advance online publication, 27 May 2007 (doi:10.1038/ng2075).

  74. Easton, D. F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature Advance online publication, 27 May 2007 (doi:10.1038/nature05887).

  75. Skol, A. D., Scott, L. J., Abecasis, G. R. & Boehnke, M. Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nature Genet. 38, 209–213 (2006).

    Article  CAS  Google Scholar 

  76. Stacey, S. N. et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nature Genet. Advance online publication, 27 May 2007 (doi:10.1038/ng2064)

  77. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    Article  CAS  Google Scholar 

  78. Scott, L. J. et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316, 1341–1345 (2007).

    Article  ADS  CAS  Google Scholar 

  79. Zeggini, E. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 316, 1336–1341 (2007).

    Article  ADS  CAS  Google Scholar 

  80. Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science Advance online publication, 3 May 2007 (doi:10.1126/science.1142842).

  81. McPherson, R. et al. A common allele on chromosome 9 associated with coronary heart disease. Science Advance online publication, 3 May 2007 (doi:10.1126/science.1142447).

Download references

Author information

Authors and Affiliations

Consortia

Corresponding authors

Correspondence to Stephen J. Chanock or Teri Manolio.

Additional information

Note added in proof: Recently, a series of papers have also shown replication across as well as within genome-wide association studies in common complex diseases such as breast cancer, type 2 diabetes, and coronary disease73,74,76,77,78,79,80,81. Author Contributions S.J.C. and T.M. contributed equally to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

NCI-NHGRI Working Group on Replication in Association Studies. Replicating genotype–phenotype associations. Nature 447, 655–660 (2007). https://doi.org/10.1038/447655a

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/447655a

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing