Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Comparison of recombinant adenovirus and synthetic peptide for DC-based melanoma vaccination

Abstract

Optimal strategies for antigen-specific melanoma vaccination are currently being defined in experimental mouse models. Using a single H2-Kb-binding peptide epitope derived from the melanosomal enzyme tyrosinase-related protein 2 (TRP2) in C57BL/6 mice, we show that adenovirus-transduced dendritic cells (DC) are clearly superior to peptide-pulsed DC for the induction of CD8+ T cells and antimelanoma immunity. Vaccine efficacy strictly depended on the presence of linked CD4+ T-cell help during the priming but not the effector phase of the immune response. These results provide important information for the translation of melanoma vaccine strategy in future clinical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Boon T, Coulie PG, Van den EB . Tumor antigens recognized by T cells. Immunol Today 1997; 18(6): 267–268.

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg SA . Progress in human tumour immunology and immunotherapy. Nature 2001; 411(6835): 380–384.

    Article  CAS  PubMed  Google Scholar 

  3. Wolfel T, Van PA, Brichard V, Schneider J, Seliger B, Meyer zum Buschenfelde KH et al. Two tyrosinase nonapeptides recognized on HLA-A2 melanomas by autologous cytolytic T lymphocytes. Eur J Immunol 1994; 24(3): 759–764.

    Article  CAS  PubMed  Google Scholar 

  4. Parkhurst MR, Fitzgerald EB, Southwood S, Sette A, Rosenberg SA, Kawakami Y . Identification of a shared HLA-A*0201-restricted T-cell epitope from the melanoma antigen tyrosinase-related protein 2 (TRP2). Cancer Res 1998; 58(21): 4895–4901.

    CAS  PubMed  Google Scholar 

  5. Colella TA, Bullock TN, Russell LB, Mullins DW, Overwijk WW, Luckey CJ et al. Self-tolerance to the murine homologue of a tyrosinase-derived melanoma antigen: implications for tumor immunotherapy. J Exp Med 2000; 191(7): 1221–1232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bowne WB, Srinivasan R, Wolchok JD, Hawkins WG, Blachere NE, Dyall R et al. Coupling and uncoupling of tumor immunity and autoimmunity. J Exp Med 1999; 190(11): 1717–1722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Steitz J, Bruck J, Steinbrink K, Enk A, Knop J, Tuting T . Genetic immunization of mice with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma. Int J Cancer 2000; 86(1): 89–94.

    Article  CAS  PubMed  Google Scholar 

  8. Figdor CG, de VI, Lesterhuis WJ, Melief CJ . Dendritic cell immunotherapy: mapping the way. Nat Med 2004; 10(5): 475–480.

    Article  CAS  PubMed  Google Scholar 

  9. Tuting T, Steitz J, Bruck J, Gambotto A, Steinbrink K, DeLeo AB et al. Dendritic cell-based genetic immunization in mice with a recombinant adenovirus encoding murine TRP2 induces effective anti-melanoma immunity. J Gene Med 1999; 1(6): 400–406.

    Article  CAS  PubMed  Google Scholar 

  10. Steitz J, Bruck J, Knop J, Tuting T . Adenovirus-transduced dendritic cells stimulate cellular immunity to melanoma via a CD4(+) T cell-dependent mechanism. Gene Therapy 2001; 8(16): 1255–1263.

    Article  CAS  PubMed  Google Scholar 

  11. Schreurs MW, Eggert AA, de Boer AJ, Vissers JL, van Hall T, Offringa R et al. Dendritic cells break tolerance and induce protective immunity against a melanocyte differentiation antigen in an autologous melanoma model. Cancer Res 2000; 60(24): 6995–7001.

    CAS  PubMed  Google Scholar 

  12. Shimizu K, Thomas EK, Giedlin M, Mule JJ . Enhancement of tumor lysate- and peptide-pulsed dendritic cell-based vaccines by the addition of foreign helper protein. Cancer Res 2001; 61(6): 2618–2624.

    CAS  PubMed  Google Scholar 

  13. Wang HY, Fu T, Wang G, Zeng G, Perry-Lalley DM, Yang JC et al. Induction of CD4(+) T cell-dependent antitumor immunity by TAT-mediated tumor antigen delivery into dendritic cells. J Clin Invest 2002; 109(11): 1463–1470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stevenson FK, Rice J, Ottensmeier CH, Thirdborough SM, Zhu D . DNA fusion gene vaccines against cancer: from the laboratory to the clinic. Immunol Rev 2004; 199: 156–180.

    Article  CAS  PubMed  Google Scholar 

  15. Steitz J, Bruck J, Gambotto A, Knop J, Tuting T . Genetic immunization with a melanocytic self-antigen linked to foreign helper sequences breaks tolerance and induces autoimmunity and tumor immunity. Gene Therapy 2002; 9(3): 208–213.

    Article  CAS  PubMed  Google Scholar 

  16. Schoenberger SP, Toes RE, van d V, Offringa R, Melief CJ . T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998; 393(6684): 480–483.

    Article  CAS  PubMed  Google Scholar 

  17. Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR . Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998; 393(6684): 478–480.

    Article  CAS  PubMed  Google Scholar 

  18. Ridge JP, Di RF, Matzinger P . A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998; 393(6684): 474–478.

    Article  CAS  PubMed  Google Scholar 

  19. Smith CM, Wilson NS, Waithman J, Villadangos JA, Carbone R, Heath WR et al. Cognate CD4(+) T cell licensing of dendritic cells in CD8(+) T cell immunity. Nat Immunol 2004; 5(11): 1143–1148.

    Article  CAS  PubMed  Google Scholar 

  20. Bloom MB, Perry-Lalley D, Robbins PF, Li Y, el-Gamil M, Rosenberg SA et al. Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 1997; 185(3): 453–459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brossart P, Goldrath AW, Butz EA, Martin S, Bevan MJ . Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J Immunol 1997; 158(7): 3270–3276.

    CAS  PubMed  Google Scholar 

  22. Hardy S, Kitamura M, Harris-Stansil T, Dai Y, Phipps ML . Construction of adenovirus vectors through Cre-lox recombination. J Virol 1997; 71(3): 1842–1849.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tuting T, Gambotto A, DeLeo A, Lotze MT, Robbins PD, Storkus WJ . Induction of tumor antigen-specific immunity using plasmid DNA immunization in mice. Cancer Gene Ther 1999; 6(1): 73–80.

    Article  CAS  PubMed  Google Scholar 

  24. Banchereau J, Schuler-Thurner B, Palucka AK, Schuler G . Dendritic cells as vectors for therapy. Cell 2001; 106(3): 271–274.

    Article  CAS  PubMed  Google Scholar 

  25. Schuler G, Schuler-Thurner B, Steinman RM . The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003; 15(2): 138–147.

    Article  CAS  PubMed  Google Scholar 

  26. Ribas A, Butterfield LH, Glaspy JA, Economou JS . Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol 2003; 21(12): 2415–2432.

    Article  CAS  PubMed  Google Scholar 

  27. Schuler-Thurner B, Schultz ES, Berger TG, Weinlich G, Ebner S, Woerl P et al. Rapid induction of tumor-specific type 1T helper cells in metastatic melanoma patients by vaccination with mature, cryopreserved, peptide-loaded monocyte-derived dendritic cells. J Exp Med 2002; 195(10): 1279–1288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jonuleit H, Giesecke-Tuettenberg A, Tuting T, Thurner-Schuler B, Stuge TB, Paragnik L et al. A comparison of two types of dendritic cell as adjuvants for the induction of melanoma-specific T-cell responses in humans following intranodal injection. Int J Cancer 2001; 93(2): 243–251.

    Article  CAS  PubMed  Google Scholar 

  29. Ridgway D . The first 1000 dendritic cell vaccinees. Cancer Invest 2003; 21(6): 873–886.

    Article  PubMed  Google Scholar 

  30. Mayordomo JI, Zorina T, Storkus WJ, Zitvogel L, Celluzzi C, Falo LD et al. Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1995; 1(12): 1297–1302.

    Article  CAS  PubMed  Google Scholar 

  31. Labeur MS, Roters B, Pers B, Mehling A, Luger TA, Schwarz T et al. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol 1999; 162(1): 168–175.

    CAS  PubMed  Google Scholar 

  32. Ribas A, Butterfield LH, Amarnani SN, Dissette VB, Kim D, Meng WS et al. CD40 cross-linking bypasses the absolute requirement for CD4T cells during immunization with melanoma antigen gene-modified dendritic cells. Cancer Res 2001; 61(24): 8787–8793.

    CAS  PubMed  Google Scholar 

  33. Shibagaki N, Udey MC . Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity. J Immunol 2002; 168(5): 2393–2401.

    Article  CAS  PubMed  Google Scholar 

  34. Boczkowski D, Nair SK, Snyder D, Gilboa E . Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo. J Exp Med 1996; 184(2): 465–472.

    Article  CAS  PubMed  Google Scholar 

  35. Ludewig B, Krebs P, Junt T, Metters H, Ford NJ, Anderson RM et al. Determining control parameters for dendritic cell–cytotoxic T lymphocyte interaction. Eur J Immunol 2004; 34(9): 2407–2418.

    Article  CAS  PubMed  Google Scholar 

  36. Eggert AO, Becker JC, Ammon M, McLellan AD, Renner G, Merkel A et al. Specific peptide-mediated immunity against established melanoma tumors with dendritic cells requires IL-2 and fetal calf serum-free cell culture. Eur J Immunol 2002; 32(1): 122–127.

    Article  CAS  PubMed  Google Scholar 

  37. Steitz J, Bruck J, Lenz J, Buchs S, Tuting T . Peripheral CD8+ T cell tolerance against melanocytic self-antigens in the skin is regulated in two steps by CD4+ T cells and local inflammation: implications for the pathophysiology of vitiligo. J Invest Dermatol 2005; 124(1): 144–150.

    Article  CAS  PubMed  Google Scholar 

  38. Tanchot C, Rocha B . CD8 and B cell memory: same strategy, same signals. Nat Immunol 2003; 4(5): 431–432.

    Article  CAS  PubMed  Google Scholar 

  39. Shedlock DJ, Shen H . Requirement for CD4T cell help in generating functional CD8T cell memory. Science 2003; 300(5617): 337–339.

    Article  CAS  PubMed  Google Scholar 

  40. Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP . CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 2003; 421(6925): 852–856.

    Article  CAS  PubMed  Google Scholar 

  41. Rocha B, Tanchot C . Towards a cellular definition of CD8+ T-cell memory: the role of CD4+ T-cell help in CD8+ T-cell responses. Curr Opin Immunol 2004; 16(3): 259–263.

    Article  CAS  PubMed  Google Scholar 

  42. Sun JC, Williams MA, Bevan MJ . CD4+ T cells are required for the maintenance, not programming, of memory CD8+ T cells after acute infection. Nat Immunol 2004; 5(9): 927–933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Serra P, Amrani A, Yamanouchi J, Han B, Thiessen S, Utsugi T et al. CD40 ligation releases immature dendritic cells from the control of regulatory CD4+CD25+ T cells. Immunity 2003; 19(6): 877–889.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Tu90/3-2 to TT) and a Lise-Meitner-Stipendium from the NRW government to JS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Tüting.

Additional information

Supplementary information accompanies the paper on Cancer Gene Therapy website (http://www.nature.com/cgt).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steitz, J., Tormo, D., Schweichel, D. et al. Comparison of recombinant adenovirus and synthetic peptide for DC-based melanoma vaccination. Cancer Gene Ther 13, 318–325 (2006). https://doi.org/10.1038/sj.cgt.7700894

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/sj.cgt.7700894

Keywords

This article is cited by

Search

Quick links