Abstract
Transcriptional noise is a necessary consequence of the molecular events that drive gene expression in prokaryotes. However, some environmental microorganisms that inhabit polluted sites, for example, the m-xylene degrading soil bacterium Pseudomonas putida mt-2 seem to have co-opted evolutionarily such a noise for deploying a metabolic diversification strategy that allows a cautious exploration of new chemical landscapes. We have examined this phenomenon under the light of deterministic and stochastic models for activation of the main promoter of the master m-xylene responsive promoter of the system (Pu) by its cognate transcriptional factor (XylR). These analyses consider the role of co-factors for Pu activation and determinants of xylR mRNA translation. The model traces the onset and eventual disappearance of the bimodal distribution of Pu activity along time to the growth-phase dependent abundance of XylR itself, that is, very low in exponentially growing cells and high in stationary. This tenet was validated by examining the behaviour of a Pu-GFP fusion in a P. putida strain in which xylR expression was engineered under the control of an IPTG-inducible system. This work shows how a relatively simple regulatory scenario (for example, growth-phase dependent expression of a limiting transcription factor) originates a regime of phenotypic diversity likely to be advantageous in competitive environmental settings.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Acar M, Becskei A, van Oudenaarden A . (2005). Enhancement of cellular memory by reducing stochastic transitions. Nature 435: 228–232.
Acar M, Mettetal JT, van Oudenaarden A . (2008). Stochastic switching as a survival strategy in fluctuating environments. Nat Genet 40: 471–475.
Ackermann M . (2013). Microbial individuality in the natural environment. ISME J 7: 465–467.
Ackermann M . (2015). A functional perspective on phenotypic heterogeneity in microorganisms. Nat Rev Microbiol 13: 497–508.
Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S . (2004). Bacterial persistence as a phenotypic switch. Science 305: 1622–1625.
Balazsi G, van Oudenaarden A, Collins JJ . (2011). Cellular decision making and biological noise: from microbes to mammals. Cell 144: 910–925.
Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN . (2002). Global analysis of mRNA decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent DNA microarrays. Proc Natl Acad Sci USA 99: 9697–9702.
Blake WJ, Balazsi G, Kohanski MA, Isaacs FJ, Murphy KF, Kuang Y et al. (2006). Phenotypic consequences of promoter-mediated transcriptional noise. Mol Cell 24: 853–865.
Choi KH, Gaynor JB, White KG, Lopez C, Bosio CM, Karkhoff-Schweizer RR et al. (2005). A Tn7-based broad-range bacterial cloning and expression system. Nat Methods 2: 443–448.
Choi KH, Schweizer HP . (2006). mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1: 153–161.
de Las Heras A, de Lorenzo V . (2012). Engineering whole-cell biosensors with no antibiotic markers for monitoring aromatic compounds in the environment. Methods Mol Biol 834: 261–281.
de Las Heras A, Fraile S, de Lorenzo V . (2012). Increasing signal specificity of the TOL network of Pseudomonas putida mt-2 by rewiring the connectivity of the master regulator XylR. PLoS Genet 8: e1002963.
de Lorenzo V, Eltis L, Kessler B, Timmis KN . (1993). Analysis of Pseudomonas gene products using lacIq/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123: 17–24.
de Lorenzo V, Herrero M, Jakubzik U, Timmis KN . (1990). Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172: 6568–6572.
de Lorenzo V, Timmis KN . (1994). Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235: 386–405.
Deris JB, Kim M, Zhang Z, Okano H, Hermsen R, Groisman A et al. (2013). The innate growth bistability and fitness landscapes of antibiotic-resistant bacteria. Science 342: 1237435.
Dublanche Y, Michalodimitrakis K, Kümmerer N, Foglierini M, Serrano L . (2006). Noise in transcription negative feedback loops: simulation and experimental analysis. Mol Syst Biol 2: 41.
Fraile S, Roncal F, Fernandez LA, de Lorenzo V . (2001). Monitoring intracellular levels of XylR in Pseudomonas putida with a single-chain antibody specific for aromatic-responsive enhancer-binding proteins. J Bacteriol 183: 5571–5579.
Gallie J, Libby E, Bertels F, Remigi P, Jendresen CB, Ferguson GC et al. (2015). Bistability in a metabolic network underpins the de novo evolution of colony switching in Pseudomonas fluorescens. PLoS Biol 13: e1002109.
Garmendia J, de las Heras A, Galvão TC, de Lorenzo V . (2008). Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. Microb Biotechnol 1: 236–246.
Ghosh S, Sureka K, Ghosh B, Bose I, Basu J, Kundu M . (2011). Phenotypic heterogeneity in mycobacterial stringent response. BMC Syst Biol 5: 18.
Gillespie DT . (1977). Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81: 2340–2361.
Grimbergen AJ, Siebring J, Solopova A, Kuipers OP . (2015). Microbial bet-hedging: the power of being different. Curr Opin Microbiol 25: 67–72.
Guantes R, Cayrol B, Busi F, Arluison V . (2012). Positive regulatory dynamics by a small noncoding RNA: speeding up responses under temperature stress. Mol Biosyst 8: 1707–1715.
Guido NJ, Lee P, Wang X, Elston TC, Collins JJ . (2007). A pathway and genetic factors contributing to elevated gene expression noise in stationary phase. Biophys J 93: L55–L57.
Kaern M, Elston TC, Blake WJ, Collins JJ . (2005). Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6: 451–464.
Kotte O, Volkmer B, Radzikowski JL, Heinemann M . (2014). Phenotypic bistability in Escherichia coli's central carbon metabolism. Mol Sys Biol 10: 736.
Kueh HY, Champhekar A, Nutt SL, Elowitz MB, Rothenberg EV . (2013). Positive feedback between PU.1 and the cell cycle controls myeloid differentiation. Science 341: 670–673.
Kussell E, Leibler S . (2005). Phenotypic diversity, population growth, and information in fluctuating environments. Science 309: 2075–2078.
Levine E, Zhang Z, Kuhlman T, Hwa T . (2007). Quantitative characteristics of gene regulation by small RNA. PLoS Biol 5: e229.
Linares JF, Moreno R, Fajardo A, Martinez-Solano L, Escalante R, Rojo F et al. (2010). The global regulator Crc modulates metabolism, susceptibility to antibiotics and virulence in Pseudomonas aeruginosa. Environ Microbiol 12: 3196–3212.
Maamar H, Dubnau D . (2005). Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 56: 615–624.
Maamar H, Raj A, Dubnau D . (2007). Noise in gene expression determines cell fate in Bacillus subtilis. Science 317: 526–529.
Marques S, Gallegos MT, Manzanera M, Holtel A, Timmis KN, Ramos JL . (1998). Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida. J Bacteriol 180: 2889–2894.
Martínez-García E, Calles B, Arévalo-Rodríguez M, de Lorenzo V . (2011). pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes. BMC Microbiol 11: 38.
Mehta P, Goyal S, Wingreen NS . (2008). A quantitative comparison of sRNA-based and protein-based gene regulation. Mol Sys Biol 4: 221.
Milojevic T, Grishkovskaya I, Sonnleitner E, Djinovic-Carugo K, Blasi U . (2013). The Pseudomonas aeruginosa catabolite repression control protein Crc is devoid of RNA binding activity. PLoS One 8: e64609.
Moreno R, Fonseca P, Rojo F . (2010). The Crc global regulator inhibits the Pseudomonas putida pWW0 toluene/xylene assimilation pathway by repressing the translation of regulatory and structural genes. J Biol Chem 285: 24412–24419.
Moreno R, Hernandez-Arranz S, La Rosa R, Yuste L, Madhushani A, Shingler V et al. (2015). The Crc and Hfq proteins of Pseudomonas putida cooperate in catabolite repression and formation of ribonucleic acid complexes with specific target motifs. Environ Microbiol 17: 105–118.
Moreno R, Martinez-Gomariz M, Yuste L, Gil C, Rojo F . (2009). The Pseudomonas putida Crc global regulator controls the hierarchical assimilation of amino acids in a complete medium: evidence from proteomic and genomic analyses. Proteomics 9: 2910–2928.
Nevozhay D, Adams RM, Murphy KF, Josic K, Balázsi G . (2009). Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. Proc Natl Acad Sci USA 106: 5123–5128.
New AM, Cerulus B, Govers SK, Perez-Samper G, Zhu B, Boogmans S et al. (2014). Different levels of catabolite repression optimize growth in stable and variable environments. PLoS Biol 12: e1001764.
Newman JR, Ghaemmaghami S, Ihmels J, Breslow DK, Noble M, DeRisi JL et al. (2006). Single-cell proteomic analysis of S. cerevisiae reveals the architecture of biological noise. Nature 441: 840–846.
Ochab-Marcinek A, Tabaka M . (2010). Bimodal gene expression in noncooperative regulatory systems. Proc Natl Acad Sci USA 107: 22096–22101.
Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A . (2004). Multistability in the lactose utilization network of Escherichia coli. Nature 427: 737–740.
Perez-Martin J, de Lorenzo V . (1996). VTR expression cassettes for engineering conditional phenotypes in Pseudomonas: activity of the Pu promoter of the TOL plasmid under limiting concentrations of the XylR activator protein. Gene 172: 81–86.
Proshkin S, Rahmouni AR, Mironov A, Nudler E . (2010). Cooperation between translating ribosomes and RNA polymerase in transcription elongation. Science 328: 504–508.
Raj A, van Oudenaarden A . (2008). Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135: 216–226.
Raser JM, O'Shea EK . (2005). Noise in gene expression: origins, consequences, and control. Science 309: 2010–2013.
Ruiz-Manzano A, Yuste L, Rojo F . (2005). Levels and activity of the Pseudomonas putida global regulatory protein Crc vary according to growth conditions. J Bacteriol 187: 3678–3686.
Sambrook J, Fritsch EF, Maniatis T . (1989) Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: New York, USA.
Schweizer HP . (2001). Vectors to express foreign genes and techniques to monitor gene expression in Pseudomonads. Curr Opin Biotechnol 12: 439–445.
Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T . (2010). Interdependence of cell growth and gene expression: origins and consequences. Science 330: 1099–1102.
Scott M, Hwa T . (2011). Bacterial growth laws and their applications. Curr Opin Biotechnol 22: 559–565.
Silva-Rocha R, de Lorenzo V . (2011). A composite feed-forward loop I4-FFL involving IHF and Crc stabilizes expression of the XylR regulator of Pseudomonas putida mt-2 from growth phase perturbations. Mol Biosyst 7: 2982–2990.
Silva-Rocha R, de Lorenzo V . (2012). Stochasticity of TOL plasmid catabolic promoters sets a bimodal expression regime in Pseudomonas putida mt-2 exposed to m-xylene. Mol Microbiol 86: 199–211.
Silva-Rocha R, Perez-Pantoja D, de Lorenzo V . (2013). Decoding the genetic networks of environmental bacteria: regulatory moonlighting of the TOL system of Pseudomonas putida mt-2. ISME J 7: 229–232.
So L-h, Ghosh A, Zong C, Sepulveda LA, Segev R, Golding I . (2011). General properties of transcriptional time series in Escherichia coli. Nat Genet 43: 554–560.
Suel GM, Garcia-Ojalvo J, Liberman LM, Elowitz MB . (2006). An excitable gene regulatory circuit induces transient cellular differentiation. Nature 440: 545–550.
Sureka K, Ghosh B, Dasgupta A, Basu J, Kundu M, Bose I . (2008). Positive feedback and noise activate the stringent response regulator rel in mycobacteria. PLoS One 3: e1771.
Tan C, Marguet P, You L . (2009). Emergent bistability by a growth-modulating positive feedback circuit. Nat Chem Biol 5: 842–848.
Taniguchi Y, Choi PJ, Li GW, Chen H, Babu M, Hearn J et al. (2010). Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 329: 533–538.
To TL, Maheshri N . (2010). Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science 327: 1142–1145.
Valls M, Buckle M, de Lorenzo V . (2002). In vivo UV laser footprinting of the Pseudomonas putida sigma 54 Pu promoter reveals that integration host factor couples transcriptional activity to growth phase. J Biol Chem 277: 2169–2175.
Valls M, de Lorenzo V . (2003). Transient XylR binding to the UAS of the Pseudomonas putida sigma 54 promoter Pu revealed with high intensity UV footprinting in vivo. Nucleic Acids Res 31: 6926–6934.
Veening JW, Stewart EJ, Berngruber TW, Taddei F, Kuipers OP, Hamoen LW . (2008). Bet-hedging and epigenetic inheritance in bacterial cell development. Proc Natl Acad Sci USA 105: 4393–4398.
Venturelli OS, Zuleta I, Murray RM, El-Samad H . (2015). Population diversification in a yeast metabolic program promotes anticipation of environmental shifts. PLoS Biol 13: e1002042.
Vogel U, Jensen KF . (1994). The RNA chain elongation rate in Escherichia coli depends on the growth rate. J Bacteriol 176: 2807–2813.
Volfson D, Marciniak J, Blake WJ, Ostroff N, Tsimring LS, Hasty J . (2006). Origins of extrinsic variability in eukaryotic gene expression. Nature 439: 861–864.
Zimmermann M, Escrig S, Hubschmann T, Kirf MK, Brand A, Inglis RF et al. (2015). Phenotypic heterogeneity in metabolic traits among single cells of a rare bacterial species in its natural environment quantified with a combination of flow cell sorting and NanoSIMS. Front Microbiol 6: 243.
Zobel S, Benedetti I, Eisenbach L, de Lorenzo V, Wierckx N, Blank LM . (2015). Tn7-Based device for calibrated heterologous gene expression in Pseudomonas putida. ACS Synth Biol; e-pub ahead of print 20 July 2015.
Acknowledgements
We thank Angel Goñi for critical reading of the manuscript. This work was supported by the CAMBIOS Program of the Spanish Ministry of Economy and Competitiveness, the ARISYS, EVOPROG and EMPOWERPUTIDA Contracts of the EU, The ERANET-IB and the PROMT Project of the CAM. RG acknowledges financial support from the Spanish Ministry of Economy and Competitiveness (grant BFU2013-45918-R) and the AIRBIOTA project of the CAM.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies this paper on The ISME Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Guantes, R., Benedetti, I., Silva-Rocha, R. et al. Transcription factor levels enable metabolic diversification of single cells of environmental bacteria. ISME J 10, 1122–1133 (2016). https://doi.org/10.1038/ismej.2015.193
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ismej.2015.193


