Abstract
Fungal polyketides have huge structural diversity from simple aromatics to highly modified complex reduced-type compounds. Despite such diversty, single modular iterative type I polyketide synthases (iPKSs) are responsible for their carbon skeleton construction. Using heterologous expression systems, we have studied on ATX, a 6-methylsalicylic acid synthase from Aspergillus terreus as a model iPKS. In addition, iPKS functions involved in fungal spore pigment biosynthesis were analyzed together with polyketide-shortening enzymes that convert products of PKSs to shorter ketides by hydrolytic C–C bond cleavage. In our studies on reducing-type iPKSs, we cloned and expressed PKS genes, pksN, pksF, pksK and sol1 from Alternaria solani. The sol gene cluster was found to be involved in solanapyrone biosynthesis and sol5 was identified to encode solanapyrone synthase, a Diels-Alder enzyme. Our fungal PKS studies were further extended to identify the function of PKS-nonribosomal peptide synthase involved in cyclopiazonic acid biosynthesis.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Birch, A. J., Massy-Westropp, R. A. & Moye, C. J. Biosynthesis (VII) 2-hydroxy-6-methyl benzoic acid in Penicillium griseofulvum. Aust. J. Chem. 8, 539–544 (1955).
Dimroth, P., Walter, H. & Lynen, F. Biosynthese von 6-methylsalicylsäure. Eur. J. Biochem. 13, 98–110 (1970).
Beck, J., Ripka, S., Signer, A., Schiltz, E. & Schweizer, E. The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum. Its gene structure relative to that of other polyketide synthases. Eur. J. Biochem. 192, 487–498 (1990).
Shen, B. Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7, 285–295 (2003).
Fujii, I., Watanabe, A. & Ebizuka, Y. More functions for multifunctional polyketide synthases. in Advances in Fungal Biotechnology for Industrial, Agriculture, and Medicine (eds Tkacz, J.S. & Lange, L.) 97–125 (Kluwer Academic/Plenum Publishers, New York, 2004).
Wenzel, S. C. & Müller, R. Formation of novel secondary metabolites by bacterial mutimodular assembly lines: deviatons from textbook biosynthetic logic. Curr. Opin. Chem. Biol. 9, 447–458 (2005).
Fujii, I. et al. Cloning of the polyketide synthase gene atX from Aspergillus terreus and its identification as the 6-methylsalicylic acid synthase gene by heterologous expression. Mol. Gen. Genet. 253, 1–10 (1996).
Watanabe, A. et al. Product identification of polyketide synthase coded by Aspergillus nidulans wA gene. Tetrahedron Lett. 39, 7733–7736 (1998).
Watanabe, A. et al. Re-identification of Aspergillus nidulans wA gene to code for a polyketide synthase of naphthopyrone. Tetrahedron Lett. 40, 91–94 (1999).
Watanabe, A. et al. Aspergillus fumigatus alb1 encodes naphthopyrone synthase when expressed in Aspergillus oryzae. FEMS Microbiol. Lett. 192, 39–44 (2000).
Fujii, I. et al. Heterologous expression and product identification of Colletotrichum lagenarium polyketide synthase encoded by the PKS1 gene involved in melanin biosynthesis. Biosci. Biotechnol. Biochem. 63, 1445–1452 (1999).
Fujii, I. et al. Enzymatic synthesis of 1,3,6,8-tetrahydroxynaphthalene solely from malonyl coenzyme A by a fungal iterative Type I polyketide synthase PKS1. Biochemistry 39, 8853–8858 (2000).
Fujii, T., Yamaoka, H., Gomi, K., Kitamoto, K. & Kumagai, C. Cloning and nucleotide sequence of the ribonuclease T1 Gene (rntA) from Aspergillus oryzae and its expression in Saccharomyces cerevisiae and Aspergillus oryzae. Biosci. Biotech. Biochem. 59, 1869–1874 (1995).
Kealey, J. T., Liu, L., Santi, D. V., Betlach, M. C. & Barr, P. J. Production of a polyketide natural product in nonpolyketide-producing prokaryotic and eukaryotic hosts. Proc. Natl Acad. Sci. USA 95, 505–509 (1998).
Nakano, M. M., Gorbell, N., Besson, J. & Zuber, P. Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Mol. Gen. Genet. 232, 313–321 (1992).
Moriguchi, T., Ebizuka, Y. & Fujii, I. Analysis of subunit interactions in the iterative type I polyketide synthase ATX from Aspergillus terreus. Chembiochem 7, 1869–1874 (2006).
Rost, B., Yachdav, G. & Liu, J. The PredictProtein server. Nucleic Acid Res. 32, W321–W326 (2004).
Ahlert, J. et al. The calicheamicin gene cluster and its iterative type I enddiyne PKS. Science 297, 1173–1176 (2002).
Moriguchi, T., Ebizuka, Y. & Fujii, I. Domain-domain interactions in the iterative type I polyketide synthase ATX from Aspergillus terreus. Chembiochem 9, 1207–1212 (2008).
Richardson, M. T., Pohl, N. L., Kealy, J. T. & Khosla, C. Tolerance and specificity of recombinant 6-methylsalicylic acid synthase. Metab. Eng. 1, 180–187 (1999).
Maier, T., Leibundgut, M. & Ban, N. The crystal structure of a mammalian fatty acid synthase. Science 321, 1315–1322 (2008).
Rangan, V. S., Johi, A. K. & Smith, S. Mapping the functional topology of the animal fatty acid synthase by mutant complementation in vitro. Biochemisry 40, 10792–10799 (2001).
Gaisser, S., Trefzer, A., Stckert, S., Kirshning, A. & Bechthold, A. Cloning of an avilamycin biosynthetic gene cluster from Streptomyces viridochromogenes Tü57. J. Bacteriol. 179, 6271–6278 (1997).
Moriguch, T., Kezuka, Y., Nonaka, T., Ebizuka, Y. & Fujii, I. Hidden function of catalytic domain in 6-methylsalicylic acid synthase. J. Biol. Chem. (in press) (2010).
Mayorga, M. E. & Timberlake, W. E. Isolation and molecular characterization of the Aspergillus nidulans wA gene. Genetics 126, 73–79 (1990).
Mayorga, M. E. & Timberlake, W. E. The developmentally regulated Aspergillus nidulans wA gene encodes a polypeptide homologous to polyketide and fatty acid synthases. Mol. Gen. Genet. 235, 205–212 (1992).
Takano, Y. et al. Structual analysis of PKS1, a polyketide synthase gene involved in melanin biosynthesis of Colletotrichum lagenarium. Mol. Gen. Genet. 249, 162–167 (1995).
Kubo, Y., Nakamoto, H., Kobayashi, K., Okuno, T. & Furusawa, I. Cloning of a melanin biosynthesis gene essential for appressorial penetration of Colletotrichum lagenarium. Mol. Plant Microb. Interact. 4, 440–445 (1991).
Tsai, H.- F., Washburn, R. G., Chang, Y. C. & Kwon-Chung, K. J. Aspergillus fumigatus arp1 modulates conidial pigmentation and complement deposition. Mol. Microbiol. 26, 175–183 (1997).
Tsai, H.- F., Chang, Y. C., Washburn, R. G., Wheeler, M. H. & Kwon-Chung, K. J. The developmentally regulated alb1 gene of Aspergillus fumigatus: its role in modulation of conidial morphology and virulence. J. Bacteriol. 180, 3031–3038 (1998).
Fujii, I., Watanabe, A., Sankawa, U. & Ebizuka, Y. Identificatin of Claisen cyclase domain in fungal polyketide synthase WA, a naphthopyrone synthase of Aspergillus nidulans. Chem. Biol. 8, 189–197 (2001).
Tsai, H.- F. et al. Pentaketide melanin biosynthesis in Aspergillus fumigatus requies chain-length shortening of a heptaketide precursor. J. Biol. Chem. 276, 29292–29298 (2001).
Feng, B. et al. Molecular cloning and characterization of WdPKS1, a gene involved in dihydroxynaphthalene melanin biosynthesis and virulence in Wangiella (Exopphiala) dermatitidis. Infect. Immun. 69, 1781–1794 (2001).
Wheeler, M. H. & Sipanovic, R. D. Melanin biosynthesis and the metabolisim of flavilin and 2-hydroxyjuglone in Wangiella dermatitidis. Arch. Microbiol. 142, 234–241 (1985).
Wheeler, M. H. et al. New biosynthetic step in the melanin pathway of Wagiella (Exophiala) dermatitidis: evidence for 2-acetyl-1,3,6,8-tetrahydroxynaphthalene as a novel precursor. Eukaryot. Cell 7, 1699–1711 (2008).
Watanabe, A. & Ebizuka, Y. A novel hexaketide naphthopyrone synthesized by a chimeric polyketide synthase coomposed of fungal pentaketide and heptaketide synthases. Tetrahedron Lett. 43, 843–846 (2002).
Wheeler, M. H., Cheng, Q., Puckhaber, L. S. & Szaniszlo, P. J. Evidence for heptaketeide melanin biosynthesis and chain-shortening of the melanin precursor YWA1 to 1,3,6,8-tetrahydroxynaphthalene in Wangiella (Exophilla) dermatitidis. in 105th Gen. Meet. Am. Soc. Vol. abst. F036 266 (Washington, DC, 2005).
Cox, R. J. Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org. Biomol. Chem. 5, 2010–2026 (2007).
Hoffmeister, D. & Keller, N. P. Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat. Prod. Rep. 24, 393–416 (2007).
Davidson, M. H. & Robinson, J. G. Lipid-lowering effects of statins: a comparative reiview. Expert Opin. Pharmacother. 7, 1701–1714 (2006).
Hutchinson, C. R. et al. Molecular genetics of lovastatin and compactin biosynthesis. in Handbook of Industrial Mycology (ed An, Z.) 479–491 (Marcel Dekker, New York, 2005).
Ichihara, A. & Oikawa, H. Biosynthesis of phytotoxins from Alternaria solani. Biosci. Biotechnol. Biochem. 61, 12–18 (1997).
Ichihara, A., Tazaki, H. & Sakamura, S. Solanapyrones A, B and C, phytotoxic metabolites from the fungus Alternaria solani. Tetrahedron Lett. 24, 5373–5376 (1983).
Ichihara, A., Miki, M. & Sakamura, S. Absolute configuration of (−)-solanapyrone A. Tetrahedron Lett. 26, 2453–2454 (1985).
Oikawa, H. et al. Biosynthesis of solanapyrone A, a phytotoxin of Alternaria solani. J. Chem. Soc. Chem. Commun. 1282–1284 (1989).
Oikawa, H., Katayama, K., Suzuki, Y. & Ichihara, A. Enzymatic activity catalyzing exo-selective Diels-Alder reaction in solanapyrone biosynthesis. J. Chem. Soc. Chem. Commun. 1321–1322 (1995).
Oikawa, H., Kobayashi, T., Katayama, K., Suzuki, Y. & Ichihara, A. Total synthesis of (−)-solanapyrone A via enzymatic Diels-Alder reaction of prosolanapyrone. J. Org. Chem. 63, 8748–8756 (1998).
Ichihara, A. & Oikawa, H. The Diels-Alder reaction in biosynthesis of polyketide phytotoxins. in Comprehensive Natural Products Chemistry Vol. 1 (ed Sankawa, U.) 367–408 (Elsevier, Oxford, 1999).
Fujii, I., Yoshida, N., Shimomaki, S., Oikawa, H. & Ebizuka, Y. An iterative type I polyketide synthase PKSN catalyzing synthesis of the decaketide alternapyrone with regio-specific octa-methylation. Chem. Biol. 12, 1301–1309 (2005).
Kennedy, J. et al. Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284, 1368–1372 (1999).
Proctor, R. H. & Desjaradins, A. E. A polyketide synthase gene required for biosynthesis of Fusarium mycotoxins in Gebberella fujikuroi mating population A. Fungal Genet. Biol. 27, 100–112 (1999).
Rebuffat, S., Davoust, D., Molho, L. & Molho, D. Citreomontanin, a new polyene a-pyrone isolated from Penicillium pedemontanum. Phytochemistry 19, 427–431 (1980).
Sakabe, N., Goto, T. & Hirata, Y. Structure of citreoviridin, a mycotoxin produced by Penicillium citreo-viride molded on rice. Tetrahedron 33, 3077–3081 (1977).
Niwa, M., Endo, T., Ogiso, S., Furukawa, H. & Yamamura, S. Two new pyrones, metabolites of Penicillium citreo-viride Biourge. Chem. Lett. 10, 1285–1288 (1981).
Kruger, G. J., Steyn, P. S., Vleffar, R. & Rabie, C. J. X-ray crystal structure of asteltoxin, a novel mycotoxin from Aspergillus stellatus Curzi. J. Chem. Soc. Chem. Commun. 441–442 (1979).
Kasahara, K., Fujii, I., Oikawa, H. & Ebizuka, Y. Expression of Alternaria solani PKSF generates a set of complex reduced-type polyketides with different carbon-lengths and cyclization. Chembiochem 7, 920–924 (2006).
Song, Z., Cox, R. J., Lazarus, C. M. & Simpson, T. J. Fusarin C biosynthesis in Fusarium moniliforme and Fusarium venenatum. Chembiochem 5, 1196–1203 (2004).
Oikawa, H., Suzuki, Y., Naya, A., Katayama, K. & Ichihara, A. First direct evidence in biological Diels-Alder reaction of incorporation of diene-dienophile precursors in the biosynthesis of solanapyrone. J. Am. Chem. Soc. 116, 3605–3606 (1994).
Oikawa, H. et al. Involvement of Diels-Alder reaction i biosynthesis of secondary natural products: the late stage of the biosynthesis of the phytotoxins solanapyrones. J. Chem. Soc. Perkin Trans. 1, 1225–1232 (1999).
Kasahara, K. et al. Solanapyrone synthase, a possible Diels-Aldrase, and iterative type I polyketide synthase encoded in a biosynthetic gene cluster from Alternaria solani. Chem. Biol. (in press) (2010).
Galagan, J. E. et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438, 1105–1115 (2005).
Nierman, W. C. et al. Genomic sequence of the pathogenic ana allergenic filamentous fungus Aspergillus fumigatus. Nature 438, 1151–1156 (2005).
Machida, M. et al. Genome sequencing and analysis of Aspergillus oryzae. Nature 438, 1157–1161 (2005).
Tokuoka, M. et al. Identification of a novel polyketide synthase-nonribosomal peptide synthase (PKS-NRPS) gene required for the biosynthesis of cyclopiazonic acid in Aspergillus oryzae. Fungal Genet. Biol. 45, 1608–1615 (2008).
Holzapfel, C. W. Isolation and structure of two new indole derivatives from Penicillium cyclopium. Tetrahedron 24, 2101–2119 (1968).
Seidler, N. W., Jona, I., Vegh, M. & Martonosi, A. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmid reticulum. J. Biol. Chem. 264, 17816–17823 (1989).
Venkatesh, P. K., Vairamuthu, S., Balachandran, C., Manohar, B. M. & Raj, G. D. Induction of apoptosis by fungal culture materials containing cyclopiazonic acid and T-2 toxin in primary lymphoid organs of broiler chickens. Mycopathologia 159, 393–400 (2005).
Dorner, J. W., Cole, R. J. & Diener, U. L. The relationship of Aspergillus flavus and Aspergillus parasiticus with reference to production of aflatoxin and cyclopiazonic acid. Mycopathologia 87, 13–15 (1984).
Vinokurova, N. G., Ivanushkina, N. E., Khme’nitskaya, I. I. & Arinbasarov, M. U. Synthesis of a-cyclopiazonic acid by fungi of the genus Aspergillus. Appl. Biochem. Microbiol. 43, 435–438 (2007).
Gallgher, R. T., Richard, J. L., Stahr, H. M. & Cole, R. J. Cyclopiazonic acid production by aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus. Mycopathologia 66, 31–36 (1978).
Urano, T. et al. Co-occurrence of cyclopiazonic acid and aflatoxin in corn and peanuts. J. AOAC Int. 75, 838–841 (1992).
Lansden, J. A. & Davidson, J. I. Occurrence of cyclopiazonic acid in peanuts. Appl. Environ. Microbiol. 45, 766–769 (1983).
Orth, R. Mycotoxins of Aspergillus oryzae strains for use in the food industry as starters and enzymes producing molds. Ann. Nutr. Aliment 31, 617–624 (1977).
Holzapfel, C. W. & Wilkins, D. C. Biosynthesis of cyclopiazonic acid. Phytochemistry 10, 351–358 (1971).
Eley, K. L. et al. Biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana. Chembiochem 8, 289–297 (2007).
Maiya, S., Grundmann, A., Li, X., Li, S.- M. & Turner, G. Identification of a hybrid PKS/NRPS required for pseurotin A biosynthesis in the human pathogen Aspergillus fumigatus. Chembiochem 8, 1736–1743 (2007).
Schümann, J. & Hertweck, C. Molecular basis of cytochalasan biosynthesis in fungi: gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. J. Am. Chem. Soc. 129, 9564–9565 (2007).
Halo, L. M. et al. Authentic heterologous expression of the tenellin iterative polyketide synthase nonribosomal peptide synthase requires coexpression with an enoyl reductase. Chembiochem 9, 585–594 (2008).
Sims, J. W. & Schmidt, E. W. Thioesterase-like role for fungal PKS-NRPS hybrid reductive domains. J. Am. Chem. Soc. 130, 11149–11155 (2008).
Ma, S. M. et al. Enzymatic synthesis of aromatic polyketides using PKS4 from Gibberella fujikuroi. J. Am. Chem. Soc. 129, 10642–10643 (2007).
Crawford, J. M. et al. Deconstruction of iterative multidomain polyketide synthase function. Science 320, 243–246 (2008).
Ma, S. M. et al. Complete reconstitution of a highly reducing iterative polyketide synthase. Science 326, 589–592 (2009).
Crawford, J. M. et al. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Nature 461, 1139–1143 (2009).
Zarrin, M., Leeder, A. C. & Turner, G. A rapid method for promoter exchange in Aspergillus nidulans using recombinant PCR. Fungal Genet. Biol. 42, 1–8 (2005).
Bergmann, S. et al. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat. Chem. Biol. 3, 213–217 (2007).
Bok, J. W. et al. Chromatin-level regulation of biosynthetic gene clusters. Nat. Chem. Biol. 5, 462–464 (2009).
Bok, J. W. & Keller, N. P. LaeA, a regulator of secondary metabolism in Aspergillus spp. Eukaryot. Cell 3, 527–535 (2004).
Bayram, Ö. et al. VelB/VeA complex coordinates light signal with fungal development and secondary metabolism. Science 320, 1504–1506 (2008).
Bok, J. W. et al. Genomic mining for Aspergillus natural products. Chem. Biol. 13, 31–37 (2006).
Acknowledgements
These studies were performed in my current laboratory at Iwate Medical University and my previous laboratory at The University of Tokyo, together with Dr T Moriguchi, Dr K Kasahara, Dr Y Seshime, Mr S Shimomaki, Mr Y Yasuoka, Mr M Naruse, Ms N Yoshida, Ms N Nambu and Professor Emeritus Y Ebizuka. I thank to collaborators, Professor H Oikawa (Hokkaido University), Dr J Kwon-Chung and Dr Tsai (US NIH), Dr M Wheeler (USDA), Professor P Szaniszlo (University of Texas), Professor K Kitamoto (The University of Tokyo), Professor K Gomi (Tohoku University). These works were supported in part by Grant-in-Aids for Scientific Research (B) (No. 19310139) to IF from the Japan Society of the Promotion of Science and by a Grant-in-Aid for Scientific Research on Priority Areas ‘Applied Genomics’, to IF from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fujii, I. Functional analysis of fungal polyketide biosynthesis genes. J Antibiot 63, 207–218 (2010). https://doi.org/10.1038/ja.2010.17
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ja.2010.17
Keywords
This article is cited by
-
Drosophila attack inhibits hyphal regeneration and defense mechanisms activation for the fungus Trichoderma atroviride
The ISME Journal (2022)
-
A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones
Nature Catalysis (2020)
-
Genomics-driven discovery of a biosynthetic gene cluster required for the synthesis of BII-Rafflesfungin from the fungus Phoma sp. F3723
BMC Genomics (2019)
-
Polyketide synthases of Diaporthe helianthi and involvement of DhPKS1 in virulence on sunflower
BMC Genomics (2018)
-
Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea
Scientific Reports (2018)


