Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70, 461–477 (2007).
Bérdy, J. Bioactive microbial metabolites. J. Antibiot. 58, 1–26 (2005).
Hertweck, C. Hidden biosynthetic treasures brought to light. Nat. Chem. Biol. 5, 450–452 (2009).
Scherlach, K. & Hertweck, C. Triggering cryptic natural product biosynthesis in microorganisms. Org. Biomol. Chem. 7, 1753–1760 (2009).
Galagan, J. E. et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature 438, 1105–1115 (2005).
von Döhren, H. A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans. Fungal Genet. Biol. 46 (Suppl 1), S45–S52 (2009).
Gross, H. Strategies to unravel the function of orphan biosynthesis pathways: recent examples and future prospects. Appl. Microbiol. Biotechnol. 75, 267–277 (2007).
Bergmann, S. et al. Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat. Chem. Biol. 3, 213–217 (2007).
Chiang, Y. M. et al. A gene cluster containing two fungal polyketide synthases encodes the biosynthetic pathway for a polyketide, asperfuranone, in Aspergillus nidulans. J. Am. Chem. Soc. 131, 2965–2970 (2009).
Bok, J. W. et al. Chromatin-level regulation of biosynthetic gene clusters. Nat. Chem. Biol. 5, 462–464 (2009).
Williams, R. B., Henrikson, J. C., Hoover, A. R., Lee, A. E. & Cichewicz, R. H. Epigenetic remodeling of the fungal secondary metabolome. Org. Biomol. Chem. 6, 1895–1897 (2008).
Henrikson, J. C., Hoover, A. R., Joyner, P. M. & Cichewicz, R. H. A chemical epigenetics approach for engineering the in situ biosynthesis of a cryptic natural product from Aspergillus niger. Org. Biomol. Chem. 7, 435–438 (2009).
Fisch, K. M. et al. Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger. J. Ind. Microbiol. Biotechnol. 36, 1199–1213 (2009).
Schroeckh, V. et al. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl Acad. Sci. USA 106, 14558–14563 (2009).
Bode, H. B., Bethe, B., Hofs, R. & Zeeck, A. Big effects from small changes: possible ways to explore nature's chemical diversity. Chembiochem 3, 619–627 (2002).
Scherlach, K. & Hertweck, C. Discovery of aspoquinolones A-D, prenylated quinoline-2-one alkaloids from Aspergillus nidulans, motivated by genome mining. Org. Biomol. Chem. 4, 3517–3520 (2006).
Suemitsu, R., Ohnishi, K., Morikawa, Y. & Nagatomo, S. Zinnimidine and 5-(3′,3′-dimethylallyloxy)-7-methoxy-6-methylphthalide from Alternaria porri. Phytochemistry 38, 495–497 (1995).
Horiuchi, M., Maoka, T., Iwase, N. & Ohnishi, K. Reinvestigation of structure of porritoxin, a phytotoxin of Alternaria porri. J. Nat. Prod. 65, 1204–1205 (2002).
Horiuchi, M. et al. A novel isoindoline, porritoxin sulfonic acid, from Alternaria porri and the structure-phytotoxicity correlation of its related compounds. Biosci. Biotechnol. Biochem. 67, 1580–1583 (2003).
Kawahara, N., Nozawa, K., Nakajima, S., Udagawa, S. & Kawai, K. Studies on fungal products. XVI. New metabolites related to 3-methylorsellinate from Aspergillus silvaticus. Chem. Pharm. Bull. 36, 398–400 (1988).
Achenbach, H., Muhlenfeld, A., Kohl, W. & Brillinger, G. U. Metabolic products of microorganisms. 31. Duricaulic acid, a new natural product of the phthalimidine type from Aspergillus duricaulis. Z. Naturforsch. B 40, 1219–1225 (1985).
Nozawa, Y., Ito, M., Sugawara, K., Hanada, K. & Mizoue, K. Stachybotrin C and parvisporin, novel neuritogenic compounds. II. Structure determination. J. Antibiot. 50, 641–645 (1997).
Ballantine, J. A., Hassall, C. H. & Jones, G. The biosynthesis of phenols. IX. Asperugin, a metabolic product of Aspergillus rugulosus. J. Chem. Soc. [Perkin 1] 4672–4678 (1965).
Stierle, A., Hershenhorn, J. & Strobel, G. Zinniol-related phytotoxins from Alternaria cichorii. Phytochemistry 32, 1145–1149 (1993).
Weidner, G., d’Enfert, C., Koch, A., Mol, P. C. & Brakhage, A. A. Development of a homologous transformation system for the human pathogenic fungus Aspergillus fumigatus based on the pyrG gene encoding orotidine 5′-monophosphate decarboxylase. Curr. Genet. 33, 378–385 (1998).
Acknowledgements
We thank A Perner and F Rhein for MS and NMR measurements, respectively, and M-G Schwinger for assistance in strain cultivation. The financial support provided by the Leibniz Gemeinschaft (Pakt für Wissenschaft und Innovation) is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Scherlach, K., Schuemann, J., Dahse, HM. et al. Aspernidine A and B, prenylated isoindolinone alkaloids from the model fungus Aspergillus nidulans. J Antibiot 63, 375–377 (2010). https://doi.org/10.1038/ja.2010.46
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ja.2010.46
Keywords
This article is cited by
-
High-efficient production of mushroom polyketide compounds in a platform host Aspergillus oryzae
Microbial Cell Factories (2023)
-
Heat stress enhanced perylenequinones biosynthesis of Shiraia sp. Slf14(w) through nitric oxide formation
Applied Microbiology and Biotechnology (2023)
-
Intramolecular reductive Heck reaction in the synthesis of 3,3-disubstituted isoindolin-1-ones
Russian Chemical Bulletin (2023)
-
Application of Principal Component Analysis (PCA) to the Evaluation and Screening of Multiactivity Fungi
Journal of Ocean University of China (2022)
-
Discovery of microbial natural products by activation of silent biosynthetic gene clusters
Nature Reviews Microbiology (2015)