Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Kieser, T., Bibb, M. J., Buttner, M. J., Chater, K. F. & Hopwood, D. A. Pratical Streptomyces Genetics., The John Innes Foundation: Norwich, (2000).
Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).
Ikeda, H. et al. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21, 526–531 (2003).
Ohnishi, Y. et al. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190, 4050–4060 (2008).
Chiang, Y. M., Chang, S. L., Oakley, B. R. & Wang, C. C. Recent advances in awakening silent biosynthetic gene clusters and linking orphan clusters to natural products in microorganisms. Curr. Opin. Chem. Biol. 15, 137–143 (2011).
Baltz, R. H. Strain improvement in actinomycetes in the postgenomic era. J. Ind. Microbiol. Biotechnol. 38, 657–666 (2011).
Ochi, K. et al. Ribosome engineering and secondary metabolite production. Adv. Appl. Microbiol. 56, 155–184 (2004).
Hosaka, T., Xu, J. & Ochi, K. Increased expression of ribosome recycling factor is responsible for the enhanced protein synthesis during the late growth phase in an antibiotic-overproducing Streptomyces coelicolor ribosomal rpsL mutant. Mol. Microbiol. 61, 883–897 (2006).
Wang, G., Hosaka, T. & Ochi, K. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations. Appl. Environ. Microbiol. 74, 2834–2840 (2008).
Hosaka, T. et al. Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. Nat. Biotechnol. 27, 462–464 (2009).
Shima, J., Hesketh, A., Okamoto, S., Kawamoto, S. & Ochi, K. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J. Bacteriol. 178, 7276–7284 (1996).
Hu, H., Zhang, Q. & Ochi, K. Activation of antibiotic biosynthesis by specified mutations in the rpoB gene (encoding the RNA polymerase beta subunit) of Streptomyces lividans. J. Bacteriol. 184, 3984–3991 (2002).
Nishimura, K., Hosaka, T., Tokuyama, S., Okamoto, S. & Ochi, K. Mutations in rsmG, encoding a 16S rRNA methyltransferase, result in low-level streptomycin resistance and antibiotic overproduction in Streptomyces coelicolor A3(2). J. Bacteriol. 189, 3876–3883 (2007).
Wittmann, H. G. et al. Biochemical and genetic studies on two different types of erythromycin resistant mutants of Escherichia coli with altered ribosomal proteins. Mol. Gen. Genet. 127, 175–189 (1973).
Chittum, H. S. & Champney, W. S. Ribosomal protein gene sequence changes in erythromycin-resistant mutants of Escherichia coli. J. Bacteriol. 176, 6192–6198 (1994).
Diner, E. J. & Hayes, C. S. Recombineering reveals a diverse collection of ribosomal proteins L4 and L22 that confer resistance to macrolide antibiotics. J. Mol. Biol. 386, 300–315 (2009).
Acknowledgements
This study was performed through the Program for Dissemination of Tenure-Track System funded by the Ministry of Education and Science, Japan, and partially supported by the Hokuto Bio-science Promotion Foundation. We are grateful to Drs Haifeng Hu and Yukinori Tanaka for discussions at the early stage of this study.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on The Journal of Antibiotics website
Supplementary information
Rights and permissions
About this article
Cite this article
Imai, Y., Fujiwara, T., Ochi, K. et al. Development of the ability to produce secondary metabolites in Streptomyces through the acquisition of erythromycin resistance. J Antibiot 65, 323–326 (2012). https://doi.org/10.1038/ja.2012.16
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ja.2012.16
Keywords
This article is cited by
-
High-intensity green light potentially activates the actinorhodin biosynthetic pathway in Streptomyces coelicolor A3(2)
Archives of Microbiology (2024)
-
Evaluation and comparison of antibiotic susceptibility profiles of Streptomyces spp. from clinical specimens revealed common and region-dependent resistance patterns
Scientific Reports (2022)
-
A putative mechanism underlying secondary metabolite overproduction by Streptomyces strains with a 23S rRNA mutation conferring erythromycin resistance
Applied Microbiology and Biotechnology (2020)
-
Current strategies to induce secondary metabolites from microbial biosynthetic cryptic gene clusters
Annals of Microbiology (2018)
-
A possible mechanism for lincomycin induction of secondary metabolism in Streptomyces coelicolor A3(2)
Antonie van Leeuwenhoek (2018)