Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
McGlacken, G. P. & Fairlamb, I. J. S. 2-Pyrone natural products and mimetics: isolation, characterization and biological activity. Nat. Prod. Rep. 22, 369–385 (2005).
Wilkes, S. & Glasl, H. Isolation, characterization, and systematic significance of 2-pyrone-4, 6-dicarboxylic acid in Rosaceae. Phytochemistry 58, 441–449 (2001).
Azuma, H., Sekizaki, S., Akizawa, T., Yasuhara, T. & Nakajima, T. Activities of novel polyhydroxylated cardiotonic steroids purified from nuchal glands of the snake, Rhabdophis tigrinus. J. Pharm. Pharmacol. 38, 388–390 (1986).
Petersen, F. & Zahner, H. Germicidin, an autoregulative germination inhibitor of Streptomyces viridochromogenes NRRL B-1551. J. Antibiot. 46, 1126–1138 (1993).
Aoki, Y., Matsumoto, D., Kawaide, H. & Natsume, M. Physiological role of germicidins in spore germination and hyphal elongation in Streptomyces coelicolor A3(2). J. Antibiot. 64, 607–611 (2011).
Song, L. et al. Type III polyketide synthase β-ketoacyl-ACP starter unit and ethylmalonyl-CoA extender unit selectivity discovered by Streptomyces coelicolor genome mining. J. Am. Chem. Soc. 128, 14754–14755 (2006).
Xu, Z., Ding, L. & Hertweck, C. A branched extender unit shared between two orthogonal polyketide pathways in an Endophyte. Angew. Chem. Int. Ed. 50, 4667–4670 (2011).
Sugiyama, Y., Oya, A., Kudo, T. & Hirota, A. Surugapyrone A from Streptomyces coelicoflavus strain USF-6280 as a new DPPH radical-scavenger. J. Antibiot. 63, 365–369 (2010).
Zhang, J. et al. Violapyrones A-G, a-pyrone derivatives from Streptomyces violascens isolated from Hylobates hoolock feces. J. Nat. Prod. 76, 2126–2130 (2013).
Brachmann, A. O. et al. Pyrones as bacterial signaling molecules. Nat. Chem. Biol. 9, 573–578 (2013).
Irschik, H., Gerth, K., Hofle, G., Kohl, W. & Reichenbach, H. The myxopyronins, new inhibitors of bacterial RNA synthesis from Myxococcus fulvus (Myxobacterales). J. Antibiot. 36, 1651–1658 (1983).
Irschik, H., Jansen, R., Hofle, G., Gerth, K. & Reichenbach, H. The corallopyronins, new inhibitors of bacterial RNA synthesis from Myxobacteria. J. Antibiot. 38, 145–152 (1985).
Xaio, J. Z., Kumazawa, S., Yoshikawa, N. & Mikawa, T. Dactylfungins, novel antifungal antibiotics produced by Dactylaria parvispora. J. Antibiot. 46, 48–55 (1993).
Evidente, A. et al. Phytotoxic α-pyrones produced by Pestalotiopsis guepinii, the causal agent of hazelnut twig blight. J. Antibiot. 65, 203–206 (2012).
Seshime, Y., Juvvadi, P. R., Kitamoto, K., Ebizuka, Y. & Fujii, I. Identification of csypyrone B1 as the novel product of Aspergillus oryzae type III polyketide synthase CsyB. Bioorg. Med. Chem. 18, 4542–4546 (2010).
Hashimoto, M. et al. Identification of csypyrone B2 and B3 as the minor products of Aspergillus oryzae type III polyketide synthase CsyB. Bioorg. Med. Chem. Lett. 23, 650–653 (2013).
Zhang, H. et al. α-Pyrones with diverse hydroxyl substitutions from three marine-derived Nocardiopsis strains. J. Nat. Prod. 79, 1610–1618 (2013).
Sucipto, H. et al. In vitro reconstitution of α-pyrone ring formation in myxopyronin biosynthesis. Chem. Sci. 6, 5076–5085 (2015).
Shen, B. Polyketide biosynthesis beyond the type I, II, and III polyketide synthase paradigms. Curr. Opin. Chem. Biol. 7, 285–295 (2003).
Katsuyama, Y. & Ohnishi, Y. Type III polyketide synthases in microorganisms. Methods Enzymol. 515, 359–377 (2012).
Gruschow, S., Buchholz, T. J., Seufert, W., Dordick, J. S. & Sherman, D. H. Substrate profile analysis and ACP-mediated acyl transfer in Streptomyces coelicolor type III polyketide synthases. Chembiochem. 8, 863–868 (2007).
Chemler, J. A. et al. Biochemical and structural characterization of germicidin synthase: analysis of a type III polyketide synthase that employs acyl-ACP as a starter unit donor. J. Am. Chem. Soc. 134, 7359–7366 (2012).
Awakawa, T. et al. 4-Hydroxy-3-methyl-6-(1-methyl-2-oxoalkyl)pyran-2-one synthesis by a type III polyketide synthase from Rhodospirillum centenum. Chembiochem. 14, 1006–1013 (2013).
Ma, M. et al. Angucyclines and angucyclinones featuring C-ring cleavage and expansion from Streptomyces sp. CB01913. J. Nat. Prod. 78, 2471–2480 (2015).
Hughes, A. J., Detelich, J. F. & Keatinge-Clay, A. T. Employing a polyketide synthase module and thioesterase in the semipreparative biocatalysis of diverse triketide pyrones. Med. Chem. Commun. 3, 956–959 (2012).
Akie, I. & Kiyoshi, T. Synthesis of δ-lactones. IV. 6-alkyl or 6-aralkyl δ-lactones from cyclopentanone. Chem. Pharm. Bull. 21, 215–219 (1973).
Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).
Acknowledgements
We thank the NMR Core facility at the Scripps Research Institute, Jupiter, Florida in obtaining the 1H and 13C NMR data. This work is supported in part by the Chinese Ministry of Education 111 Project B08034 (to YD) and Natural Products Library Initiative at The Scripps Research Institute.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on The Journal of Antibiotics website
Supplementary information
Rights and permissions
About this article
Cite this article
Ma, M., Rateb, M., Yang, D. et al. Germicidins H–J from Streptomyces sp. CB00361. J Antibiot 70, 200–203 (2017). https://doi.org/10.1038/ja.2016.100
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/ja.2016.100
This article is cited by
-
Defining the biomarkers in anti-MRSA fractions of soil Streptomycetes by multivariate analysis
Antonie van Leeuwenhoek (2025)
-
Isolation and optimized production of putative antimicrobial compounds from Egyptian soil isolate Streptomyces sp. MS. 10
Beni-Suef University Journal of Basic and Applied Sciences (2021)
-
Structure-based molecular networking for the target discovery of novel germicidin derivatives from the sponge-associated streptomyces sp. 18A01
The Journal of Antibiotics (2021)