Abstract
The aim of our pilot study was to evaluate the contribution of genes for xenobiotic-metabolizing enzymes (XMEs) for the development of bronchial asthma. We have genotyped 25 polymorphic variants of 18 key XME genes in 429 Russians, including 215 asthmatics and 214 healthy controls by a polymerase chain reaction, followed by restriction fragment length polymorphism analyses. We found for the first time significant associations of CYP1B1 V432L (P=0.045), PON1 Q192R (P=0.039) and UGT1A6 T181A (P=0.025) gene polymorphisms with asthma susceptibility. Significant P-values were evaluated through Monte-Carlo simulations. The multifactor-dimensionality reduction method has obtained the best three-locus model for gene–gene interactions between three loci, EPHX1 Y113H, CYP1B1 V432L and CYP2D6 G1934A, in asthma at a maximum cross-validation consistency of 100% (P=0.05) and a minimum prediction error of 37.8%. We revealed statistically significant gene–environment interactions (XME genotypes–smoking interactions) responsible for asthma susceptibility for seven XME genes. A specific pattern of gametic correlations between alleles of XME genes was found in asthmatics in comparison with healthy individuals. The study results point to the potential relevance of toxicogenomic mechanisms of bronchial asthma in the modern world, and may thereby provide a novel direction in the genetic research of the respiratory disease in the future.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Moffatt, M. F. Genes in asthma: new genes and new ways. Curr. Opin. Allergy. Clin. Immunol. 8, 411–417 (2008).
Zhang, J., Paré, P. D. & Sandford, A. J. Recent advances in asthma genetics. Respir. Res. 15, 4 (2008).
Bossé, Y. & Hudson, T. J. Toward a comprehensive set of asthma susceptibility genes. Annu. Rev. Med. 58, 171–184 (2007).
Vercelli, D. Advances in asthma and allergy genetics in 2007. J. Allergy Clin. Immunol. 122, 267–271 (2008).
Szalai, C., Ungvári, I., Pelyhe, L., Tölgyesi, G. & Falus, A. Asthma from a pharmacogenomic point of view. Br. J. Pharmacol. 153, 1602–1614 (2008).
Selgrade, M. K., Lemanske, R. F. Jr., Gilmour, M. I., Neas, L. M., Ward, M. D. & Henneberger, P. K. et al. Induction of asthma and the environment: what we know and need to know. Environ. Health Perspect. 114, 615–619 (2006).
Castro-Giner, F., Kauffmann, F., de, Cid, R. & Kogevinas, M. Gene-environment interactions in asthma. Occup. Environ. Med. 63, 776–786 (2006).
Kelly, F. J. & Sandstom, T. Air pollution, oxidative stress and allergic response. Lancet 363, 95–99 (2004).
Peden, D. B. The epidemiology and genetics of asthma risk associated with air pollution. J. Allergy Clin. Immunol. 115, 213–219 (2005).
Koenig, J. Q., Mar, T. F. & Allen, R. W. Pulmonary effects of indoor- and outdoor-generated particles in children with asthma. Environ. Health Perspect. 113, 499–503 (2005).
Salam, M. T., Islam, T. & Gilliland, F. D. Recent evidence for adverse effects of residential proximity to traffic sources on asthma. Curr. Opin. Pulm. Med. 14, 3–8 (2008).
Riedl, M. A. The effect of air pollution on asthma and allergy. Curr. Allergy Asthma Rep. 8, 139–146 2008.
Gilliland, F. D., Li, Y. F., Saxon, A. & Diaz-Sanchez, D. Effect of glutathione-S-transferase M1 and P1 genotypes on xenobiotic enhancement of allergic responses: randomised, placebo-controlled crossover study. Lancet 363, 119–125 (2004).
Lee, Y. L., Lin, Y. C., Lee, Y. C., Wang, J. Y., Hsiue, T. R. & Guo, Y. L. Glutathione S-transferase P1 gene polymorphism and air pollution as interactive risk factors for childhood asthma. Clin. Exp. Allergy 34, 1707–1713 (2004).
Solodilova, M. A., Ivanov, V. P., Polonikov, A. V., Khoroshaya, I. V., Kozhuhov, M. A. & Panfilov, V. I. Heterozygosity of 198Leu mutant allele in glutathione peroxidase-1 gene as a risk factor of bronchial asthma associated with smoking. Ter. Arkh. 79, 33–36 (2007).
Polonikov, A. V., Ivanov, V. P., Solodilova, M. A., Khoroshaya, I. V., Kozhuhov, M. A. & Panfilov, V. I. The relationship between polymorphisms in the glutamate cysteine ligase gene and asthma susceptibility. Respir. Med. 101, 2422–2424 (2007).
Ivanov, V. P., Solodilova, M. A., Polonikov, A. V., Khoroshaya, I. V., Kozhuhov, M. A. & Panfilov, V. I. Association analysis of C242T and A640G polymorphisms in the gene for p22phox subunit of NADPH oxidase with the risk of bronchial asthma: a pilot study. Rus. J. Genet. 44, 601–608 (2008).
Polonikov, A. V., Ivanov, V. P., Solodilova, M. A., Kozhuhov, M. A. & Panfilov, V. I. Tobacco smoking, fruit and vegetable intake modify association between -21A>T polymorphism of catalase gene and risk of bronchial asthma. J. Asthma 46, 217–224 (2009).
Zhang, J. Y., Wang, Y. F. & Prakash, C. Xenobiotic-metabolizing enzymes in human lung. Curr. Drug Metab. 7, 939–948 (2006).
Hong, Y. C., Park, H. S. & Ha, E. H. Influence of genetic susceptibility on the urinary excretion of 8-hydroxydeoxyguanosine of firefighters. Occup. Environ. Med. 57, 370–375 (2000).
Sachse, C., Brockmuller, J., Bauer, S. & Roots, I. Functional significance of a C>A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol. 47, 445–449 (1999).
Goodman, M. T., McDuffie, K. & Kolonel, L. N. Case-control study of ovarian cancer and polymorphisms in genes involved in catecholestrogen formation and metabolism. Cancer Epidemiol. Biomarkers Prev. 10, 209–216 (2001).
Lemos, M. C., Cabrita, F. J., Silva, H. A., Vivan, M., Plácido, F. & Regateiro, F. J. Genetic polymorphism of CYP2D6, GSTM1 and NAT2 and susceptibility to haematological neoplasias. Carcinogenesis 20, 1225–1229 (1999).
Wong, N. A. C. S., Rae, F., Simpson, K. J., Murray, G. D., Harrison, D. J. Genetic polymorphisms of cytochrome p4502E1 and susceptibility to alcoholic liver disease and hepatocellular carcinoma in a white population: a study and literature review, including meta-analysis. J. Clin. Pathol. Mol. Pathol. 53, 88–93 (2000).
Spiecker, M., Darius, H., Hankeln, T., Soufi, M., Sattler, A. M., Schaefer, J. R. et al. Risk of coronary artery disease associated with polymorphism of the cytochrome P450 epoxygenase CYP2J2. Circulation 110, 2132–2136 (2004).
van Schaik, R. H., de Wildt, S. N., van Iperen, N. M., Uitterlinden, A. G., van den Anker, J. N. & Lindemans, J. CYP3A4-V polymorphism detection by PCR-restriction fragment length polymorphism analysis and its allelic frequency among 199 Dutch Caucasians. Clin. Chem. 46, 1834–1836 (2000).
Smith, C. A. D. & Harrison, D. J. Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet 350, 630–633 (1997).
Hassett, C., Aicher, L., Sidhu, J. S. & Omiecinski, C. J. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum. Mol. Genet. 3, 421–428 (1994).
Sandberg, M., Hassett, C., Adman, E. T., Meijer, J. & Omiecinski, C. J. Identification and functional characterization of human soluble epoxide hydrolase. J. Biol. Chem. 275, 28873–28881 (2000).
Ombres, D., Pannitteri, G., Montali, A., Candeloro, A., Seccareccia, F., Campagna, F. et al. The Gln-Arg192 polymorphism of human paraoxonase gene is not associated with coronary artery disease in Italian patients. Arterioscler. Thromb. Vasc. Biol. 18, 1611–1616 (1998).
Sanghera, D. K., Aston, C. E., Saha, N. & Kamboh, M. I. DNA polymorphisms in two paraoxonase gene (PON1 and PON2) are associated with the risk of coronary heart disease. Am. J. Hum. Genet. 62, 36–44 (1998).
Abdel-Rahman, S., El-Zein, R. A., Anwar, W. A. & Au, W. W. A multiplex PCR procedure for polymorphic analysis of GSTM1 and GSTT1 genes in population studies. Cancer Lett. 107, 229–233 (1996).
Welfare, M., Adeokun, A. M., Bassendine, M. F. & Daly, A. K. Polymorphisms in GSTP1, GSTM1, and GSTT1 and susceptibility to colorectal cancer. Cancer Epidemiol. Biomarkers Prev. 8, 289–292 (1999).
Hickman, D., Risch, A., Camilleri, J. P. & Sim, E. Genotyping human polymorphic arylamine N-acetyltransferase: identification of new slow allotypic variants. Pharmacogenetics 2, 217–226 (1992).
Zheng, W., Xie, D., Cerhan, J. R., Sellers, T. A., Wen, W. & Folsom, A. R. Sulfotransferase 1A1 polymorphism, endogenous estrogen exposure, well-done meat intake, and breast cancer risk. Cancer Epidemiol. Biomarkers Prev. 10, 89–94 (2001).
Lampe, J. W., Bigler, J., Horner, N. K & Potter, J. D. UDP-glucuronosyltransferase (UGT1A1*28 and UGT1A6*2) polymorphisms in Caucasians and Asians: relationships to serum bilirubin concentrations. Pharmacogenetics 9, 341–349 (1999).
Jamroziak, K., Balcerczak, E., Młynarski, W., Mirowski, M. & Robak, T. Distribution of allelic variants of functional C3435T polymorphism of drug transporter MDR1 gene in a sample of Polish population. Pol. J. Pharmacol. 54, 495–500 (2002).
Ritchie, M. D. & Motsinger, A. A. Multifactor dimensionality reduction for detecting gene-gene and gene-environment interactions in pharmacogenomics studies. Pharmacogenomics 6, 823–834 (2005).
Motsinger, A. A. & Ritchie, M. D. Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene-gene interactions in human genetics and pharmacogenomics studies. Hum. Genomics 2, 318–328 (2006).
Moore, J. H. Computational analysis of gene-gene interactions using multifactor dimensionality reduction. Expert Rev. Mol. Diagn. 4, 795–803 (2004).
Moore, J. H., Gilbert, J. C., Tsai, C. T., Chiang, F. T., Holden, T. & Barney, N. et al. A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J. Theor. Biol. 241, 252–261 (2006).
Hahn, L. W., Ritchie, M. D. & Moore, J. H. Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19, 376–382 (2003).
Polonikov, A. V., Ivanov, V. P., Solodilova, M. A., Khoroshaya, I. V., Kozhuhov, M. A. & Panfilov, V. I. Promoter polymorphism G-50T of a human CYP2J2 epoxygenase gene is associated with common susceptibility to asthma. Chest 132, 120–126 (2007).
Hill, W. G. Estimation of linkage disequilibrium in randomly mating populations. Heredity 33, 229–239 (1974).
Vogel, F. & Motulsky, A. G. Human Genetics—Problems and Approaches 3rd edn (Springer, New York, 1997).
Lewontin, R. C. The Genetic Basis of Evolutionary Change (Columbia University Press, New York, 1974).
Jorde, L. B. Linkage disequilibrium as a gene mapping tool. Am. J. Hum. Genet. 56, 11–14 (1995).
Hedrick, P. W., Jain, S. & Holden, L. Multilocus systems in evolution. Evol. Biol. 11, 101–182 (1978).
Hines, R. N., Koukouritaki, S. B., Poch, M. T. & Stephens, M. C. Regulatory polymorphisms and their contribution to interindividual differences in the expression of enzymes influencing drug and toxicant disposition. Drug Metab. Rev. 40, 263–301 (2008).
Ding, X. & Kaminsky, L. S. Human extrahepatic cytochromes P450: function in xenobiotic metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal tracts. Annu. Rev. Pharmacol. Toxicol. 43, 149–173 (2003).
Sanghera, D. K., Aston, C. E., Saha, N. & Kamboh, M. I. DNA polymorphisms in two paraoxonase gene (PON1 and PON2) are associated with the risk of coronary heart disease. Am. J. Hum. Genet. 62, 36–44 (1998).
Hayes, J. D., Flanagan, J. U. & Jowsey, I. R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 45, 51–88 (2005).
Takizawa, H. S., Okazaki, A. H., Kohyama, T., Sugawara, I., Saito, Y., Ohtoshi, T. et al. Diesel exhaust particles up-regulate eotaxin gene expression in human bronchial epithelial cells via nuclear factor-κB-dependent pathway. Am. J. Physiol. 284, 1055–1062 (2003).
Riedl, M. & Diaz-Sanchez, D. Biology of diesel exhaust effects on respiratory function. J. Allergy Clin. Immunol. 115, 221–228 (2005).
Vogel, C. F., Sciullo, E., Wong, P., Kuzmicky, P., Kado, N. & Matsumura, F. Induction of proinflammatory cytokines and C-reactive protein in human macrophage cell line U937 exposed to air pollution particulates. Environ. Health Perspect. 113, 1536–1541 (2005).
Saxon, A. & Diaz-Sanchez, D. Air pollution and allergy. You are what you breathe. Nat. Immunol. 6, 223–226 (2005).
Li, N., Hao, M., Phalen, R. F. & Hinds, W. C. Nel AParticulate air pollutants asthmaA paradigm for the role of oxidative stress in PM-induced adverse health effects. Clin Immunol 109, 250–265 (2003).
Acknowledgements
This research was supported in part by a grant from the President of Russian Federation (MD-3571.2008.7). We thank Drs Mikhail Kozhuhov and Valery Panfilov from the Kursk Regional Clinical Hospital for their assistance in assembling patients with asthma, as well as for their help in diagnosis of the disease. We thank Professor Jason H Moore from Dartmouth Medical School and Dartmouth College (USA) for his expert assistance in the MDR statistical analysis and for helpful comments on interpretation of the MDR data.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on Journal of Human Genetics website (http://www.nature.com/jhg)
Rights and permissions
About this article
Cite this article
Polonikov, A., Ivanov, V. & Solodilova, M. Genetic variation of genes for xenobiotic-metabolizing enzymes and risk of bronchial asthma: the importance of gene–gene and gene–environment interactions for disease susceptibility. J Hum Genet 54, 440–449 (2009). https://doi.org/10.1038/jhg.2009.58
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/jhg.2009.58
Keywords
This article is cited by
-
Association of CYP1A2 and GST gene variants with asthma in cases presenting with allergic chronic rhinosinusitis
Egyptian Journal of Medical Human Genetics (2023)
-
A systematic review and meta-analysis of paraoxonase-1 activity in asthma
Clinical and Experimental Medicine (2022)
-
Genome-wide by environment interaction studies of depressive symptoms and psychosocial stress in UK Biobank and Generation Scotland
Translational Psychiatry (2019)
-
Selection of genes for gene-environment interaction studies: a candidate pathway-based strategy using asthma as an example
Environmental Health (2013)
-
Glutathione S-transferase polymorphisms, asthma susceptibility and confounding variables: a meta-analysis
Molecular Biology Reports (2013)


