Abstract
Fetal hemoglobin (HbF) level has emerged as an important prognostic factor in sickle-cell disease (SCD) and can be measured by the proportion of HbF-containing erythrocytes (F-cells). Recently, BCL11A (zinc-finger protein) was identified as a regulator of HbF, and the strongest association signals were observed either directly for rs766432 or for correlated single-nucleotide polymorphisms (SNPs). To identify additional independently associated genetic variants, we performed a genome-wide association study (GWAS) on the proportion of F-cells in individuals of African ancestry with SCD from the Silent Infarct Transfusion (SIT) Trial cohort. Our study not only confirms the association of rs766432 (P-value <3.32 × 10−13), but also identifies an independent novel intronic SNP, rs7606173, associated with F-cells (P-value <1.81 × 10−15). The F-cell variances explained independently by these two SNPs are ∼13% (rs7606173) and ∼11% (rs766432), whereas, together they explain ∼16%. Additionally, in men, we identify a novel locus on chromosome 17, glucagon-like peptide-2 receptor (GLP2R), associated with F-cell regulation (rs12103880; P-value <3.41 × 10−8). GLP2R encodes a G protein-coupled receptor and involved in proliferative and anti-apoptotic cellular responses. These findings highlight the importance of denser genetic screens and suggest further exploration of the BCL11A and GLP2R loci to gain additional insight into HbF/F-cell regulation.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Motulsky, A. G. Frequency of sickling disorders in U.S. blacks. N. Engl. J. Med. 288, 31–33 (1973).
Platt, O. S., Brambilla, D. J., Rosse, W. F., Milner, P. F., Castro, O., Steinberg, M. H. et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N. Engl. J. Med. 330, 1639–1644 (1994).
Driss, A., Asare, K. O., Hibbert, J. M., Gee, B. E., Adamkiewicz, T. V. & Stiles, J. K. Sickle cell disease in the post genomic era: a monogenic disease with a polygenic phenotype. Genomics Insights 30, 23–48 (2009).
Watson, J. The significance of the paucity of sickle cells in newborn Negro infants. Am. J. Med. Sci. 215, 419–423 (1948).
Jacob, G. F. & Raper, A. B. Hereditary persistence of foetal haemoglobin production, and its interaction with the sickle-cell trait. Br. J. Haematol. 4, 138–149 (1958).
Platt, O. S., Thorington, B. D., Brambilla, D. J., Milner, P. F., Rosse, W. F., Vichinsky, E. et al. Pain in sickle cell disease. Rates and risk factors. N. Engl. J. Med. 325, 11–16 (1991).
Boyer, S. H., Belding, T. K., Margolet, L. & Noyes, A. N. Fetal haemoglobin restriction to a few erythrocytes (F cells) in normal human adults. Science 188, 361–363 (1975).
Miyoshi, K., Kaneto, Y., Kawai, H., Ohchi, H., Niki, S., Hasegawa, K. et al. X-linked dominant control of F-cells in normal adult life: characterization of the Swiss type as hereditary persistence of fetal hemoglobin regulated dominantly by gene(s) on X chromosome. Blood 72, 1854–1860 (1988).
Zago, M. A., Wood, W. G., Clegg, J. B., Weatherall, D. J., O’Sullivan, M. & Gunson, H. Genetic control of F cells in human adults. Blood 53, 977–986 (1979).
Thein, S. L. & Craig, J. E. Genetics of Hb F/F cell variance in adults and heterocellular hereditary persistence of fetal hemoglobin. Hemoglobin 22, 401–414 (1998).
Garner, C., Tatu, T. & Reittie, J. E. Genetic influences on F cells and other hematologic variables: a twin heritability study. Blood 95, 342–346 (2000).
Rutland, P. C., Pembrey, M. E. & Davies, T. The estimation of fetal haemoglobin in healthy adults by radioimmunoassay. Br. J. Haematol. 53, 673–682 (1983).
el-Hazmi, M. A., Warsy, A. S., Addar, M. H. & Babae, Z. Fetal haemoglobin level-effect of gender, age and haemoglobin disorders. Mol. Cell. Biochem. 135, 181–186 (1994).
Gilman, J. G. & Huisman, T. H. J. DNA sequence variation associated with elevated fetal Gγ globin production. Blood 66, 783–787 (1985).
Garner, C., Tatu, T., Game, L., Cardon, L. R., Spector, T. D., Farrall, M. et al. A candidate gene study of F cell levels in sibling pairs using a joint linkage and association analysis. Gene Screen 1, 9–14 (2000).
Craig, J. E., Rochette, J., Fisher, C. A., Weatherall, D. J., Marc, S., Lathrop, M. et al. Dissecting the loci controlling fetal haemoglobin production on chromosomes 11p and 6q by the regressive approach. Nat. Genet. 12, 58–64 (1996).
Garner, C. S., Menzel, C., Martin, C., Silver, N., Best, S., Spector, T. D. et al. Interaction between two quantitative trait loci affects fetal haemoglobin expression. Ann. Hum. Genet. 69, 707–714 (2005).
Dover, G. J., Smith, K. D., Chang, Y. C., Purvis, S., Mays, A., Meyers, D. A. et al. Fetal hemoglobin levels in sickle cell disease and normal individuals are partially controlled by an X-linked gene located at Xp22.2. Blood 80, 816–824 (1992).
Menzel, S., Garner, C., Gut, I., Matsuda, F., Yamaguchi, M., Heath, S. et al. A QTL influencing F cell production maps to a gene encoding a zinc-finger protein on chromosome 2p15. Nat. Genet. 39, 1197–1199 (2007).
Uda, M., Galanello, R., Sanna, S., Lettre, G., Sankaran, V. G., Chen, W. et al. Genome-wide association study shows BCL11A associated with persistent fetal hemoglobin and amelioration of the phenotype of β-thalassemia. Proc. Natl Acad. Sci. 105, 1620–1625 (2008).
Lettre, G., Sankaran, V. G., Bezerra, M. A., Araujo, A. S., Uda, M., Sanna, S. et al. DNA polymorphisms at the BCL11A, HBS1L-MYB, and β-globin loci associate with fetal hemoglobin levels and pain crises in sickle cell disease. Proc. Natl Acad. Sci. 105, 11869–11874 (2008).
Solovieff, N., Milton, J. N., Hartley, S. W., Sherva, R., Sebastiani, P., Dworkis, D. A. et al. Fetal hemoglobin in sickle cell anemia: genome-wide association studies suggest a regulatory region in the 5′ olfactory receptor gene cluster. Blood 115, 1815–1822 (2010).
Galarneau, G., Palmer, C. D., Sankaran, V. G., Orkin, S. H., Hirschhorn, J. N. & Lettre, G. Fine-mapping at three loci known to affect fetal hemoglobin levels explains additional genetic variation. Nat. Genet. 42, 1049–1051 (2010).
Sankaran, V. G., Menne, T. F., Xu, J., Akie, T. E., Lettre, G., Handel, B. V. et al. Human fetal hemoglobin expression is regulated by the developmental stage-specific repressor BCL11A. Science 322, 1839–1842 (2008).
International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1320 (2005).
Casella, J. F., King, A. A., Barton, B., White, D. A., Noetzel, M. J., Ichord, R. N. et al. Design of the silent cerebral infarct transfusion (SIT) trial. Pediatr. Hematol. Oncol. 27, 69–89 (2010).
Steemers, F. J. & Gunderson, K. L. Whole genome genotyping technologies on the BeadArray platform. Biotechnol. J. 2, 41–49 (2007).
Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A. & Reich, D. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
Box, G.E.P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. Series B. 26, 211–252 (1964).
Li, Y., Willer, C. J., Ding, J., Scheet, P. & Abecasis, G. R. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34, 816–834 (2010).
Durbin, R. M., Abecasis, G. R., Altshuler, D. L., Auton, A., Brooks, L. D., Durbin, R. M. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).
Aulchenko, Y. S., Struchalin, M. V. & van Duijn, C. M. ProbABEL package for genome-wide association analysis of imputed data. BMC Bioinformatics 11, 134 (2010).
Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).
Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263–265 (2005).
Stephens, M., Smith, N. J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001).
Sedgewick, A. E., Timofeev, N., Sebastiani, P., So, J. C. C., Ma, E.S.K., Chan, L. C. et al. BCL11A is a major HbF quantitative trait locus in three different populations with beta-hemoglobinopathies. Blood Cells Mol. Dis. 41, 255–258 (2008).
Nuinoon, M., Makarasara, W., Mushiroda, T., Setianingsih, I., Wahidiyat, P., Sripichai, O. et al. A genome-wide association identified the common genetic variants influence disease severity in β0-thalassemia/hemoglobin E. Hum. Genet. 127, 303–314 (2010).
Hardy, J. & Singleton, A. Genomewide association studies and human disease. N. Engl. J. Med. 360, 1759–1768 (2009).
Arking, D. E. & Chakravarti, A. Understanding cardiovascular disease through the lens of genome-wide association studies. Trends Genet. 25, 387–394 (2009).
Dover, G. J., Boyer, S. H., Charache, S. & Heintzelman, K. Individual variation in the production and survival of F cells in sickle-cell disease. N. Engl. J. Med. 299, 1428–1435 (1978).
Acknowledgements
We thank the staff, clinicians and patients for their participation in the Silent Infarct Transfusion (SIT) Trial study. This study was supported by the National Heart, Lung and Blood Institute (NHLBI) (award number: U54HL090515, 5R01HL091759) and the National Institute of Neurological Disorders and Stroke (NINDS) (NIH-NINDS 5U01-NS042804-03). Genotyping services were provided by the Center for Inherited Disease Research (CIDR). CIDR is fully funded through a federal contract from the National Institutes of Health to The Johns Hopkins University (CIDR contract number: HHSN268200782096C).
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on Journal of Human Genetics website
Supplementary information
Rights and permissions
About this article
Cite this article
Bhatnagar, P., Purvis, S., Barron-Casella, E. et al. Genome-wide association study identifies genetic variants influencing F-cell levels in sickle-cell patients. J Hum Genet 56, 316–323 (2011). https://doi.org/10.1038/jhg.2011.12
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/jhg.2011.12
Keywords
This article is cited by
-
Fetal hemoglobin-boosting haplotypes of BCL11A gene and HBS1L-MYB intergenic region in the prediction of clinical and hematological outcomes in a cohort of children with sickle cell anemia
Journal of Human Genetics (2022)
-
High fetal hemoglobin level is associated with increased risk of cerebral vasculopathy in children with sickle cell disease in Mayotte
BMC Pediatrics (2020)
-
Genetic modulators of fetal hemoglobin expression and ischemic stroke occurrence in African descendant children with sickle cell anemia
Annals of Hematology (2019)
-
ARHGAP18 is a novel gene under positive natural selection that influences HbF levels in β-thalassaemia
Molecular Genetics and Genomics (2018)
-
Genome-wide association analyses based on whole-genome sequencing in Sardinia provide insights into regulation of hemoglobin levels
Nature Genetics (2015)


