Abstract
Sandhoff disease is a GM2 gangliosidosis caused by mutations in HEXB encoding the β-subunit of β-hexosaminidase A. β-Hexosaminidase A exists as a heterodimer consisting of α- and β-subunits, and requires a GM2 activator protein to hydrolyze GM2. To investigate the molecular pathology in an adult Sandhoff disease patient with an early disease onset, we performed mutation detection, western blot analysis and molecular simulation analysis. The patient had compound heterozygous mutations p.Arg505Gln and p.Ser341ValfsX30. Western blot analysis showed that the amount of mature form of the α- and β-subunits was markedly decreased in the patient. We then performed docking simulation analysis of the α- and β-subunits with p.Arg505Gln, the GM2AP/GM2 complex and β-hexosaminidase A, and GM2 and β-hexosaminidase A. Simulation analysis showed that p.Arg505Gln impaired each step of molecular conformation of the α- and β-subunits heterodimer, the activator protein and GM2. The results indicated that p.Ser341ValfsX30 reduced the amount of β-subunit, and that p.Arg505Gln hampered the maturation of α- and β-subunits, and hindered the catalytic ability of β-hexosaminidase A. In conclusion, various methods including simulation analysis were useful to understand the molecular pathology in Sandhoff disease.
Similar content being viewed by others
Log in or create a free account to read this content
Gain free access to this article, as well as selected content from this journal and more on nature.com
or
References
Gravel, R., Kaback, M. M. & Proia, R. L. The GM2 gangliosidoses. The Metabolic and Molecular Basis of Inherited Disease eds Scriver C. R., Beaudet A. L., Sly W. S., Valle D., Childs B., Vogelstein B., 3827–3876 (McGraw-Hill, Inc.: New York, NY, USA, 2001).
Mahuran, D. J. Biochemical consequences of mutations causing the GM2 gangliosidoses. Biochim. Biophys. Acta. 1455, 105–138 (1999).
Maegawa, G. H., Stockley, T., Tropak, M., Banwell, B., Blaser, S., Kok, F. et al. The natural history of juvenile or subacute GM2 gangliosidosis: 21 new cases and literature review of 134 previously reported. Pediatrics 118, e1550–e1562 (2006).
Redonnet-Vernhet, I., Mahuran, D. J., Salvayre, R., Dubas, F. & Levade, T. Significance of two point mutations present in each HEXB allele of patients with adult GM2 gangliosidosis (Sandhoff disease) homozygosity for the Ile207—>Val substitution is not associated with a clinical or biochemical phenotype. Biochim. Biophys. Acta. 1317, 127–133 (1996).
Hara, A., Uyama, E., Uchino, M., Shimmoto, M., Utsumi, K., Itoh, K. et al. Adult Sandhoff's disease: R505Q and I207V substitutions in the HEXB gene of the first Japanese case. J. Neurol. Sci. 155, 86–91 (1998).
Oonk, J. G., van der Helm, H. J. & Martin, J. J. Spinocerebellar degeneration: hexosaminidase A and B deficiency in two adult sisters. Neurology 29, 380–384 (1979).
Delnooz, C. C., Lefeber, D. J., Langemeijer, S. M., Hoffjan, S., Dekomien, G., Zwarts, M. J. et al. New cases of adult-onset Sandhoff disease with a cerebellar or lower motor neuron phenotype. J. Neurol. Neurosurg. Psychiatry. 81, 968–972 (2010).
Yoshizawa, T., Kohno, Y., Nissato, S. & Shoji, S. Compound heterozygosity with two novel mutations in the HEXB gene produces adult Sandhoff disease presenting as a motor neuron disease phenotype. J. Neurol. Sci. 195, 129–138 (2002).
Hancock, L. W., Horwitz, A. L., Cashman, N. R., Antel, J. P. & Dawson, G. N-acetyl-beta-hexosaminidase B deficiency in cultured fibroblasts from a patient with progressive motor neuron disease. Biochem. Biophys. Res. Commun. 130, 1185–1192 (1985).
Takado, Y., Koide, T., Yoshikawa, K., Amaya, N., Yoshida, Y. & Ishiguro, H. A patient with GM2 gangliosidosis presenting with motor neuron disease symptom in his forties. Rinsho. Shinkeigaku. 47, 37–41 (2007).
Schnorf, H., Gitzelmann, R., Bosshard, N. U., Spycher, M. & Waespe, W. Early and severe sensory loss in three adult siblings with hexosaminidase A and B deficiency (Sandhoff disease). J. Neurol. Neurosurg. Psychiatry. 59, 520–523 (1995).
Hou, Y., Tse, R. & Mahuran, D. J. Direct determination of the substrate specificity of the alpha-active site in heterodimeric beta-hexosaminidase A. Biochemistry 35, 3963–3969 (1996).
Suzuki, K. Enzymatic diagnosis of sphingolipidoses. Methods. Enzymol. 138, 727–762 (1987).
Sandhoff, K., Harzer, K. & Fürst, W. Sphingolipid activator proteins. The Metabolic and Molecular Basis of Inherited Disease eds Scriver C. R., Beaudet A. L., Sly W. S., Valle D., 2427–2441 (McGraw-Hill, Inc.: New York, NY, USA, 1995).
Tropak, M. B. & Mahuran, D. Lending a helping hand, screening chemical libraries for compounds that enhance beta-hexosaminidase A activity in GM2 gangliosidosis cells. Febs. J. 274, 4951–4961 (2007).
Proia, R. L., d'Azzo, A. & Neufeld, E. F. Association of alpha- and beta-subunits during the biosynthesis of beta-hexosaminidase in cultured human fibroblasts. J. Biol. Chem. 259, 3350–3354 (1984).
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951).
Narkis, G., Adam, A., Jaber, L., Pennybacker, M., Proia, R. L. & Navon, R. Molecular basis of heat labile hexosaminidase B among Jews and Arabs. Hum. Mutat. 10, 424–429 (1997).
Mark, B. L., Mahuran, D. J., Cherney, M. M., Zhao, D., Knapp, S. & James, M. N. G. Crystal structure of human β-hexosaminidase b: understanding the molecular basis of Sandhoff and Tay–sachs disease. J. Mol. Biol. 327, 1093–1109 (2003).
Lemieux, M. J., Mark, B. L., Cherney, M. M., Withers, S. G., Mahuran, D. J. & James, M. N. Crystallographic structure of human beta-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis. J. Mol. Biol. 359, 913–929 (2006).
Maier, T., Strater, N., Schuette, C., Klingenstein, R., Sandhoff, K. & Saenger, W. The X-ray crystal structure of human β-hexosaminidase B provides new insights into Sandhoff disease. J. Mol. Biol. 328, 669–681 (2003).
Desriani, Ferri S. & Sode, K. Amino acid substitution at the substrate-binding subsite alters the specificity of the Phanerochaete chrysosporium cellobiose dehydrogenase. Biochem. Biophys. Res. Commun. 391, 1246–1250 (2010).
Wang, M. & Wang, J. A computerized protein-protein interaction modeling study of ampicillin antibody specificity in relation to biosensor development. J. Mol. Model. 17, 2873–2882 (2011).
Chen, R., Li, L. & Weng, Z. ZDOCK: an initial-stage protein-docking algorithm. Proteins 52, 80–87 (2003).
Okai, M., Kubota, K., Fukuda, M., Nagata, Y., Nagata, K. & Tanokura, M. Crystal structure of gamma-hexachlorocyclohexane Dehydrochlorinase LinA from Sphingobium japonicum UT26. J. Mol. Biol. 403, 260–269 (2010).
Wright, C. S., Zhao, Q. & Rastinejad, F. Structural analysis of lipid complexes of GM2-activator protein. J. Mol. Biol. 331, 951–964 (2003).
Ihaka, R. & Gentleman, R. R: A language for data analysis and graphics. J. Comp. Graph Stat. 5, 299–314 (1996).
Bolhuis, P. A., Oonk, J. G., Kamp, P. E., Ris, A. J., Michalski, J. C., Overdijk, B. et al. Ganglioside storage, hexosaminidase lability, and urinary oligosaccharides in adult Sandhoff's disease. Neurology 37, 75–81 (1987).
Bolhuis, P. A., Ponne, N. J., Bikker, H., Baas, F. & Vianney de Jong, J. M. Molecular basis of an adult form of Sandhoff disease: substitution of glutamine for arginine at position 505 of the beta-chain of beta-hexosaminidase results in a labile enzyme. Biochim. Biophys. Acta. 1182, 142–146 (1993).
Hasilik, A. & Neufeld, E. F. Biosynthesis of lysosomal enzymes in fibroblasts. synthesis as precursors of higher molecular weight. J. Biol. Chem. 255, 4937–4945 (1980).
Maegawa, G. H., Tropak, M., Buttner, J., Stockley, T., Kok, F., Clarke, J. T. et al. Pyrimethamine as a potential pharmacological chaperone for late-onset forms of GM2 gangliosidosis. J. Biol. Chem. 282, 9150–9161 (2007).
Acknowledgements
We greatly appreciate the technical assistance provided by Yuko Ando. We also thank Kobayashi Kazuhiro, Kanagawa Motoi, Satake Wataru and Takehiro Ueda for their helpful suggestions.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplementary Information accompanies the paper on Journal of Human Genetics website
Supplementary information
Rights and permissions
About this article
Cite this article
Yasui, N., Takaoka, Y., Nishio, H. et al. Molecular pathology of Sandhoff disease with p.Arg505Gln in HEXB: application of simulation analysis. J Hum Genet 58, 611–617 (2013). https://doi.org/10.1038/jhg.2013.68
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/jhg.2013.68
Keywords
This article is cited by
-
P. Ala278Val mutation might cause a pathogenic defect in HEXB folding leading to the Sandhoff disease
Metabolic Brain Disease (2022)


