Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Note
  • Published:

Effects of short-term niacin treatment on plasma lipoprotein concentrations in African green monkeys (Chlorocebus aethiops)

Abstract

Niacin is the most effective drug available for raising levels of high-density lipoprotein (HDL) cholesterol. To evaluate its effects on plasma lipid concentrations, the authors administered a low dose of niacin to healthy, adult, female African green monkeys for 3 months. In the treated monkeys, low-density lipoprotein cholesterol concentrations decreased by 43% from baseline, whereas concentrations of HDL cholesterol and apolipoprotein A-I increased by 49% and 34%, respectively. The results suggest that in this primate model, a low dose of niacin can effectively increase concentrations of HDL cholesterol.

This is a preview of subscription content, access via your institution

Access options

Figure 1: Plasma lipoprotein concentrations (mean ± s.e.m.) in African green monkeys during and after niacin treatment.

Similar content being viewed by others

References

  1. Vilahur, G., Padro, T. & Badimon, L. Atherosclerosis and thrombosis: insights from large animal models. J. Biomed. Biotechnol. 2011, 907575 (2011).

    Article  Google Scholar 

  2. Moghadasian, M.H., Frohlich, J.J. & McManus, B.M. Advances in experimental dyslipidemia and atherosclerosis. Lab. Invest. 81, 1173–1183 (2001).

    Article  CAS  Google Scholar 

  3. Ramharack, R., Bocan, T.M.A., Imperiale, M.J. & Spahr, M.A. Recombinant adenovirus vector mediated expression of lipoprotein (a) [Lp(a)] in rabbit plasma. Biochim. Biophys. Acta 1438, 322–328 (1999).

    Article  CAS  Google Scholar 

  4. Yin, W. et al. Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J. Lipid Res. 53, 51–65 (2012).

    Article  CAS  Google Scholar 

  5. Moghadasian, M.H. Experimental atherosclerosis: a historical overview. Life Sci. 70, 855–865 (2002).

    Article  CAS  Google Scholar 

  6. Carlsson, H., Schapiro, S.J., Farah, I. & Hau, J. Use of primates in research: a global overview. Am. J. Primatol. 63, 225–237 (2004).

    Article  Google Scholar 

  7. Cefalu, W.T. & Wagner, J.D. Aging and atherosclerosis in human and nonhuman primates. Age 20, 15–28 (1997).

    Article  CAS  Google Scholar 

  8. Weight, M.J. et al. Low density lipoprotein kinetics in African Green monkeys showing variable cholesterolaemic responses to diets realistic for westernised people. Atherosclerosis 73, 1–11 (1988).

    Article  CAS  Google Scholar 

  9. Suckling, K.E. & Jackson, B. Animal models of human lipid metabolism. Prog. Lipid Res. 32, 1–24 (1993).

    Article  CAS  Google Scholar 

  10. Bullock, B.C. et al. Comparative primate atherosclerosis: I. Tissue cholesterol concentration and pathologic anatomy. Exp. Mol. Pathol. 22, 151–175 (1975).

    Article  CAS  Google Scholar 

  11. Fincham, J.E. et al. Diets realistic for westernised people significantly affect lipoproteins, calcium, zinc, vitamins C, E, B6 and haematology in Vervet monkeys. Atherosclerosis 66, 191–203 (1987).

    Article  CAS  Google Scholar 

  12. Nichols, A.V. & Smith, L. Effect of very low-density lipoproteins on lipid transfer in incubated serum. J. Lipid Res. 6, 206–210 (1965).

    CAS  PubMed  Google Scholar 

  13. Carroll, R.M. & Rudel, L.L. Dietary fat and cholesterol effects on lipoprotein cholesterol ester formation via lecithin:cholesterol acyltransferase (LCAT) in vervet monkeys. Fed. Proc. 40, 1695 (1981).

    Google Scholar 

  14. Fernandez, M. & Wood, R. in Sourcebook of Models for Biomedical Research (ed. Conn, P.M.) 201–212 (Humana, Totowa, NJ, 2008).

    Book  Google Scholar 

  15. Carlson, L.A. Nicotinic acid: the broad-spectrum lipid drug. A 50th anniversary review. J. Intern. Med. 258, 94–114 (2005).

    Article  CAS  Google Scholar 

  16. Ohashi, R., Mu, H., Wang, X., Yao, Q. & Chen, C. Reverse cholesterol transport and cholesterol efflux in atherosclerosis. QJM 98, 845–856 (2005).

    Article  CAS  Google Scholar 

  17. Rader, D.J. Regulation of reverse cholesterol transport and clinical implications. Am. J. Cardiol. 92, 42–49 (2003).

    Article  Google Scholar 

  18. Kamanna, V.S., Ganji, S.H. & Kashyap, M.L. The mechanism and mitigation of niacin-induced flushing. Intl. J. Clin. Pract. 63, 1369–1377 (2009).

    Article  CAS  Google Scholar 

  19. Kamanna, V.S. & Kashyap, M.L. Mechanism of action of niacin. Am. J. Cardiol. 101, S20–S26 (2008).

    Article  Google Scholar 

  20. Zhang, L.-H., Kamanna, V.S., Zhang, M.C. & Kashyap, M.L. Niacin inhibits surface expression of ATP synthase β chain in HepG2 cells: implications for raising HDL. J. Lipid Res. 49, 1195–1201 (2008).

    Article  CAS  Google Scholar 

  21. Seier, J.V. Breeding vervet monkeys in a closed environment. J. Med. Primatol. 15, 339–349 (1986).

    CAS  PubMed  Google Scholar 

  22. Venter, F.S., Cloete, H., Seier, J.V., Faber, M. & Fincham, J.E. Folic acid and vitamin B12 status of vervet monkeys used for nutritional research. Lab. Anim. 27, 59–64 (1993).

    Article  CAS  Google Scholar 

  23. Tavintharan, S. & Kashyap, M. The benefits of niacin in atherosclerosis. Curr. Atheroscler. Rep. 3, 74–82 (2001).

    Article  CAS  Google Scholar 

  24. Shamekh, R. et al. Endogenous and diet-induced hypercholesterolemia in nonhuman primates: effects of age, adiposity, and diabetes on lipoprotein profiles. Metabolism 60, 1165–1177 (2011).

    Article  CAS  Google Scholar 

  25. Fusegawa, Y., Kelley, K.L., Sawyer, J.K., Shah, R.N. & Rudel, L.L. Influence of dietary fatty acid composition on the relationship between CETP activity and plasma lipoproteins in monkeys. J. Lipid Res. 42, 1849–1857 (2001).

    CAS  PubMed  Google Scholar 

  26. Wallace, J.M. et al. Effects of peroxisome proliferator-activated receptor α/δ agonists on HDL-cholesterol in vervet monkeys. J. Lipid Res. 46, 1009–1016 (2005).

    Article  CAS  Google Scholar 

  27. Offermanns, S. The nicotinic acid receptor GPR109A (HM74A or PUMA-G) as a new therapeutic target. Trends Pharmacol. Sci. 27, 384–390 (2006).

    Article  CAS  Google Scholar 

  28. Kullo, I.J., Jan, M.F., Bailey, K.R., Mosley, T.H. & Turner, S.T. Ethnic differences in low-density lipoprotein particle size in hypertensive adults. J. Clin. Lipidol. 1, 218–224 (2007).

    Article  Google Scholar 

  29. Rudel, L.L., Parks, J.S. & Sawyer, J.K. Compared with dietary monounsaturated and saturated fat, polyunsaturated fat protects African green monkeys from coronary artery atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 15, 2101–2110 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Primate Unit of the South African Medical Research Council. We thank Joritha van Heerden, Timothy Collop and Abraham Davids for their excellent technical assistance and expertise in primate management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chesa G. Chauke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chauke, C., Arieff, Z., Kaur, M. et al. Effects of short-term niacin treatment on plasma lipoprotein concentrations in African green monkeys (Chlorocebus aethiops). Lab Anim 43, 58–62 (2014). https://doi.org/10.1038/laban.424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/laban.424

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing