Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structural rearrangements in the membrane penetration protein of a non-enveloped virus

Abstract

Non-enveloped virus particles (those that lack a lipid-bilayer membrane) must breach the membrane of a target host cell to gain access to its cytoplasm. So far, the molecular mechanism of this membrane penetration step has resisted structural analysis. The spike protein VP4 is a principal component in the entry apparatus of rotavirus, a non-enveloped virus that causes gastroenteritis and kills 440,000 children each year1. Trypsin cleavage of VP4 primes the virus for entry by triggering a rearrangement that rigidifies the VP4 spikes2. We have determined the crystal structure, at 3.2 Å resolution, of the main part of VP4 that projects from the virion. The crystal structure reveals a coiled-coil stabilized trimer. Comparison of this structure with the two-fold clustered VP4 spikes in a 12 Å resolution image reconstruction from electron cryomicroscopy of trypsin-primed virions shows that VP4 also undergoes a second rearrangement, in which the oligomer reorganizes and each subunit folds back on itself, translocating a potential membrane-interaction peptide from one end of the spike to the other. This rearrangement resembles the conformational transitions of membrane fusion proteins of enveloped viruses3,4,5,6.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rotavirus virion structure, VP4 domains and fragments.
Figure 2: VP5CT structure.
Figure 3: The VP5* antigen domain and the VP8* core fit to an electron cryomicroscopy image reconstruction.
Figure 4: Model for VP4 rearrangements during priming and entry.

Similar content being viewed by others

References

  1. Parashar, U. D., Hummelman, E. G., Bresee, J. S., Miller, M. A. & Glass, R. I. Global illness and deaths caused by rotavirus disease in children. Emerg. Infect. Dis. 9, 565–572 (2003)

    Article  Google Scholar 

  2. Crawford, S. E. et al. Trypsin cleavage stabilizes the rotavirus VP4 spike. J. Virol. 75, 6052–6061 (2001)

    Article  CAS  Google Scholar 

  3. Ruigrok, R. W. et al. Studies on the structure of the influenza virus haemagglutinin at the pH of membrane fusion. J. Gen. Virol. 69, 2785–2795 (1988)

    Article  CAS  Google Scholar 

  4. Weissenhorn, W. et al. The ectodomain of HIV-1 env subunit gp41 forms a soluble, alpha-helical, rod-like oligomer in the absence of gp120 and the N-terminal fusion peptide. EMBO J. 15, 1507–1514 (1996)

    Article  CAS  Google Scholar 

  5. Modis, Y., Ogata, S., Clements, D. & Harrison, S. C. Structure of the dengue virus envelope protein after membrane fusion. Nature 427, 313–319 (2004)

    Article  ADS  CAS  Google Scholar 

  6. Gibbons, D. L. et al. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427, 320–325 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Dormitzer, P. R., Sun, Z.-Y. J., Wagner, G. & Harrison, S. C. The rhesus rotavirus VP4 sialic acid binding domain has a galectin fold with a novel carbohydrate binding site. EMBO J. 21, 885–897 (2002)

    Article  CAS  Google Scholar 

  8. Mackow, E. R. et al. The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. Proc. Natl Acad. Sci. USA 85, 645–649 (1988)

    Article  ADS  CAS  Google Scholar 

  9. Dowling, W., Denisova, E., LaMonica, R. & Mackow, E. R. Selective membrane permeabilization by the rotavirus VP5* protein is abrogated by mutations in an internal hydrophobic domain. J. Virol. 74, 6368–6376 (2000)

    Article  CAS  Google Scholar 

  10. Graham, K. L. et al. Integrin-using rotaviruses bind α2β1 integrin α2 I domain via VP4 DGE sequence and recognize αXβ2 and αVβ3 by using VP7 during cell entry. J. Virol. 77, 9969–9978 (2003)

    Article  CAS  Google Scholar 

  11. Ruggeri, F. M. & Greenberg, H. B. Antibodies to the trypsin cleavage peptide VP8 neutralize rotavirus by inhibiting binding of virions to target cells in culture. J. Virol. 65, 2211–2219 (1991)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Offit, P. A., Shaw, R. D. & Greenberg, H. B. Passive protection against rotavirus-induced diarrhea by monoclonal antibodies to surface proteins vp3 and vp7. J. Virol. 58, 700–703 (1986)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dormitzer, P. R., Greenberg, H. B. & Harrison, S. C. Proteolysis of monomeric recombinant rotavirus VP4 yields an oligomeric VP5* core. J. Virol. 75, 7339–7350 (2001)

    Article  CAS  Google Scholar 

  14. Arias, C. F., Romero, P., Alvarez, V. & Lopez, S. Trypsin activation pathway of rotavirus infectivity. J. Virol. 70, 5832–5839 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilbert, J. M. & Greenberg, H. B. Cleavage of rhesus rotavirus VP4 after arginine 247 is essential for rotavirus-like particle-induced fusion from without. J. Virol. 72, 5323–5327 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Tihova, M., Dryden, K. A., Bellamy, A. R., Greenberg, H. B. & Yeager, M. Localization of membrane permeabilization and receptor binding sites on the VP4 hemagglutinin of rotavirus: implications for cell entry. J. Mol. Biol. 314, 985–992 (2001)

    Article  CAS  Google Scholar 

  17. Taniguchi, K. et al. Identification of cross-reactive and serotype 2-specific neutralization epitopes on VP3 of human rotavirus. J. Virol. 62, 2421–2426 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Shaw, A. L. et al. Three-dimensional visualization of the rotavirus hemagglutinin structure. Cell 74, 693–701 (1993)

    Article  CAS  Google Scholar 

  19. Yeager, M., Berriman, J. A., Baker, T. S. & Bellamy, A. R. Three-dimensional structure of the rotavirus haemagglutinin VP4 by cryo-electron microscopy and difference map analysis. EMBO J. 13, 1011–1018 (1994)

    Article  CAS  Google Scholar 

  20. Liemann, S., Chandran, K., Baker, T. S., Nibert, M. L. & Harrison, S. C. Structure of the reovirus membrane-penetration protein, µ1, in a complex with its protector protein, σ3. Cell 108, 283–295 (2002)

    Article  CAS  Google Scholar 

  21. Weeks, C. M. & Miller, R. The design and implementation of SnB v2.0. J. Appl. Crystallogr. 32, 120–124 (1999)

    Article  CAS  Google Scholar 

  22. Padilla, J. E. & Yeates, T. O. A statistic for local intensity differences: robustness to anisotropy and pseudo-centering and utility for detecting twinning. Acta Crystallogr. D 59, 1124–1130 (2003)

    Article  Google Scholar 

  23. Crowther, R. A. Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. Phil. Trans. R. Soc. Lond. B 261, 221–230 (1971)

    Article  ADS  CAS  Google Scholar 

  24. Lawton, J. A. & Prasad, B. V. V. Automated software package for icosahedral virus reconstruction. J. Struct. Biol. 116, 209–215 (1996)

    Article  CAS  Google Scholar 

  25. Ludtke, S. J., Baldwin, P. R. & Chiu, W. EMAN: semiautomated software for high-resolution single-particle reconstructions. J. Struct. Biol. 128, 82–97 (1999)

    Article  CAS  Google Scholar 

  26. Wriggers, W., Milligan, R. A. & McCammon, J. A. Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125, 185–195 (1999)

    Article  CAS  Google Scholar 

  27. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for binding protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  Google Scholar 

  28. Kraulis, J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991)

    Article  Google Scholar 

  29. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from interfacial and thermodynamic properties of hydrocarbons. Prot. Struct. Funct. Genet. 11, 281–296 (1991)

    Article  CAS  Google Scholar 

  30. Yeager, M., Dryden, K. A., Olson, N. H., Greenberg, H. B. & Baker, T. S. Three-dimensional structure of rhesus rotavirus by cryoelectron microscopy and image reconstruction. J. Cell Biol. 110, 2133–2144 (1990)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Babyonyshev for technical assistance; T. Yeates for help in analysing the crystal twinning disorder; H. Greenberg for cloned genes and recombinant baculoviruses; E. Vogan for help with data collection and analysis; and the staff of Advanced Photon Source beamline ID-19 (Argonne National Laboratory) and Cornell High Energy Synchrotron Source beamlines F1 and A1. We acknowledge the use of electron cryomicroscopy facilities at the National Center for Macromolecular Imaging funded by NIH at Baylor College of Medicine. This work was supported by an NIH grant and an Ellison Medical Foundation New Investigator in Global Infectious Diseases award to P.R.D., by an NIH grant to B.V.V.P., and by an NIH grant to S.C.H., who is a Howard Hughes Medical Institute Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip R. Dormitzer.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Supplementary Figure 1

Comparison of the rotavirus VP4 F'G loop and the alphavirus E1 fusion loop. Includes an amino acid sequence comparison and a structural comparison. (PDF 158 kb)

Supplementary Figure 2

Sample of electron density. An image from an unaveraged simulated annealing omit map is shown. (PDF 1474 kb)

Supplementary Methods

Details of the crystallographic structure determination. Includes a description of the twinning disorder in the crystals. (DOC 35 kb)

Supplementary Table 1

Neutralization escape mutations. Mutations that map to the VP5* fragment are assigned to epitopes based on the VP5CT structure. (DOC 62 kb)

Supplementary Table 2

Rotavirus VP4 sequences used to assess variability and obtain a consensus sequence. The variability in these sequences is mapped onto the surfaces of the VP8* core and VP5* antigen domain in Fig. 3a, c. The consensus sequence is used to assess the similarity between the VP4 F'G loop and the alphavirus E1 fusion loop in Supplementary Fig. 1. (DOC 37 kb)

Supplementary Table 3

Alphavirus E1 sequences used to obtain a consensus. The consensus sequence is used to assess the similarity between the VP4 F'G loop and the alphavirus E1 fusion loop in Supplementary Fig. 1. (DOC 26 kb)

Supplementary Table 4

X-ray diffraction data collection, phasing, and refinement statistics. (DOC 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dormitzer, P., Nason, E., Venkataram Prasad, B. et al. Structural rearrangements in the membrane penetration protein of a non-enveloped virus. Nature 430, 1053–1058 (2004). https://doi.org/10.1038/nature02836

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature02836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing