Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Highly coupled ATP synthesis by F1-ATPase single molecules

Abstract

F1-ATPase is the smallest known rotary motor, and it rotates in an anticlockwise direction as it hydrolyses ATP1,2,3,4,5. Single-molecule experiments6,7,8,9 point towards three catalytic events per turn, in agreement with the molecular structure of the complex10. The physiological function of F1 is ATP synthesis. In the ubiquitous F0F1 complex, this energetically uphill reaction is driven by F0, the partner motor of F1, which forces the backward (clockwise) rotation of F1, leading to ATP synthesis11,12,13. Here, we have devised an experiment combining single-molecule manipulation and microfabrication techniques to measure the yield of this mechanochemical transformation. Single F1 molecules were enclosed in femtolitre-sized hermetic chambers and rotated in a clockwise direction using magnetic tweezers. When the magnetic field was switched off, the F1 molecule underwent anticlockwise rotation at a speed proportional to the amount of synthesized ATP. At 10 Hz, the mechanochemical coupling efficiency was low for the α3β3γ subcomplex (F1), but reached up to 77% after reconstitution with the ɛ-subunit (F1). We provide here direct evidence that F1 is designed to tightly couple its catalytic reactions with the mechanical rotation. Our results suggest that the ɛ-subunit has an essential function during ATP synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ATP synthesis by F1-ATPase.
Figure 2: Determination of the coupling efficiency of ATP hydrolysis.
Figure 3: Determination of the coupling efficiency of ATP synthesis.

Similar content being viewed by others

References

  1. Boyer, P. D. The ATP synthase–a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997)

    Article  CAS  Google Scholar 

  2. Senior, A. E., Nadanaciva, S. & Weber, J. The molecular mechanism of ATP synthesis by F1F0-ATP synthase. Biochim. Biophys. Acta 1553, 188–211 (2002)

    Article  CAS  Google Scholar 

  3. Yoshida, M., Muneyuki, E. & Hisabori, T. ATP synthase–a marvellous rotary engine of the cell. Nature Rev. Mol. Cell Biol. 2, 669–677 (2001)

    Article  CAS  Google Scholar 

  4. Kinosita, K. Jr, Yasuda, R. & Noji, H. F1-ATPase: a highly efficient rotary ATP machine. Essays Biochem. 35, 3–18 (2000)

    Article  CAS  Google Scholar 

  5. Leslie, A. G. & Walker, J. E. Structural model of F1-ATPase and the implications for rotary catalysis. Phil. Trans R. Soc. Lond. B 355, 465–471 (2000)

    Article  CAS  Google Scholar 

  6. Noji, H., Yasuda, R., Yoshida, M. & Kinosita, K. Jr Direct observation of the rotation of F1-ATPase. Nature 386, 299–302 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Kato-Yamada, Y., Noji, H., Yasuda, R., Kinosita, K. Jr & Yoshida, M. Direct observation of the rotation of ɛ subunit in F1-ATPase. J. Biol. Chem. 273, 19375–19377 (1998)

    Article  CAS  Google Scholar 

  8. Yasuda, R., Noji, H., Kinosita, K. Jr & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120 degree steps. Cell 93, 1117–1124 (1998)

    Article  CAS  Google Scholar 

  9. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001)

    Article  ADS  CAS  Google Scholar 

  10. Abrahams, J. P., Leslie, A. G., Lutter, R. & Walker, J. E. Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370, 621–628 (1994)

    Article  ADS  CAS  Google Scholar 

  11. Zhou, Y., Duncan, T. M. & Cross, R. L. Subunit rotation in Escherichia coli FoF1-ATP synthase during oxidative phosphorylation. Proc. Natl Acad. Sci. USA 94, 10583–10587 (1997)

    Article  ADS  CAS  Google Scholar 

  12. Diez, M. et al. Proton-powered subunit rotation in single membrane-bound FoF1-ATP synthase. Nature Struct. Mol. Biol. 11, 135–141 (2004)

    Article  CAS  Google Scholar 

  13. Itoh, H. et al. Mechanically driven ATP synthesis by F1-ATPase. Nature 427, 465–468 (2004)

    Article  ADS  CAS  Google Scholar 

  14. Hirono-Hara, Y. et al. Pause and rotation of F1-ATPase during catalysis. Proc. Natl Acad. Sci. USA 98, 13649–13654 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Hirono-Hara, Y. et al. Activation of pausing F1-motor by external force. Proc. Natl Acad. Sci. USA.(in the press)

  16. Rondelez, Y. et al. Microfabricated array of femtoliter chambers allow single molecule enzymology. Nature Biotechnol.(in the press)

  17. Nishizaka, T. et al. Chemomechanical coupling in F1-ATPase revealed by simultaneous observation of nucleotide kinetics and rotation. Nature Struct. Mol. Biol. 11, 142–148 (2004)

    Article  CAS  Google Scholar 

  18. Laget, P. P. & Smith, J. B. Inhibitory properties of endogenous subunit ɛ in the Escherichia coli F1 ATPase. Arch. Biochem. Biophys. 197, 83–89 (1979)

    Article  CAS  Google Scholar 

  19. Dunn, S. D., Zadorozny, V. D., Tozer, R. G. & Orr, L. E. Epsilon subunit of Escherichia coli F1-ATPase: effects on affinity for aurovertin and inhibition of product release in unisite ATP hydrolysis. Biochemistry 26, 4488–4493 (1987)

    Article  CAS  Google Scholar 

  20. Kato, Y. et al. Thermophilic F1-ATPase is activated without dissociation of an endogenous inhibitor, ɛ subunit. J. Biol. Chem. 272, 24906–24912 (1997)

    Article  CAS  Google Scholar 

  21. Nowak, K. F., Tabidze, V. & McCarty, R. E. The C-terminal domain of the ɛ subunit of the chloroplast ATP synthase is not required for ATP synthesis. Biochemistry 41, 15130–15134 (2002)

    Article  CAS  Google Scholar 

  22. Tsunoda, S. P. et al. Large conformational changes of the ɛ subunit in the bacterial F1Fo ATP synthase provide a ratchet action to regulate this rotary motor enzyme. Proc. Natl Acad. Sci. USA 98, 6560–6564 (2001)

    Article  ADS  CAS  Google Scholar 

  23. Suzuki, T. et al. FoF1-ATPase/synthase is geared to the synthesis mode by conformational rearrangement of ɛ subunit in response to proton motive force and ADP/ATP balance. J. Biol. Chem. 278, 46840–46846 (2003)

    Article  CAS  Google Scholar 

  24. Bulygin, V. V., Duncan, T. M. & Cross, R. L. Rotor/stator interactions of the ɛ subunit in Escherichia coli ATP synthase and implications for enzyme regulation. J. Biol. Chem. 279, 35616–35621 (2004)

    Article  CAS  Google Scholar 

  25. Gibbons, C., Montgomery, M. G., Leslie, A. G. & Walker, J. E. The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nature Struct. Biol. 7, 1055–1061 (2000)

    Article  CAS  Google Scholar 

  26. Noji, H. et al. Purine but not pyrimidine nucleotides support rotation of F1-ATPase. J. Biol. Chem. 276, 25480–25486 (2001)

    Article  CAS  Google Scholar 

  27. McDonald, J. C. & Whitesides, G. M. Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc. Chem. Res. 35, 491–499 (2002)

    Article  CAS  Google Scholar 

  28. Adachi, K., Noji, H. & Kinosita, K. Jr Single-molecule imaging of rotation of F1-ATPase. Methods Enzymol. 361, 211–227 (2003)

    Article  CAS  Google Scholar 

  29. Unger, M. A., Chou, H. P., Thorsen, T., Scherer, A. & Quake, S. R. Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288, 113–116 (2000)

    Article  ADS  CAS  Google Scholar 

  30. Matsui, T. & Yoshida, M. Expression of the wild-type and the Cys-/Trp-less α3β3γ complex of thermophilic F1-ATPase in Escherichia coli. Biochim. Biophys. Acta 1231, 139–149 (1995)

    Article  Google Scholar 

Download references

Acknowledgements

We thank all members of the Noji and Takeuchi laboratories, and H. Arata and A. Tixier-Mita for discussion and experimental support; R. Yasuda for PC programming of image analysis (CREST image); and Central Workshop in IIS for an optical microscope stage. This work was performed in the framework of LIMMS/CNRS-IIS, and supported in part by Bio-oriented Technology Research Advancement Institution (H.N. and S.T.), and Grants-in-Aid from Ministry of Education, Science, Sports and Culture of Japan (H.N., H.F. and S.T.). Y.R. and G.T. are Research Fellows of the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Noji.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests.

Supplementary information

Video of an ATP synthesis experiment (AVI 17267 kb)

Supplemental Information

1. The video time table for the ATP synthesis experiment. 2. Standard curves of rotational velocity versus ATP concentration. (DOC 38 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rondelez, Y., Tresset, G., Nakashima, T. et al. Highly coupled ATP synthesis by F1-ATPase single molecules. Nature 433, 773–777 (2005). https://doi.org/10.1038/nature03277

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature03277

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing