Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Distinct physiological states of Plasmodium falciparum in malaria-infected patients

Abstract

Infection with the malaria parasite Plasmodium falciparum leads to widely different clinical conditions in children, ranging from mild flu-like symptoms to coma and death1. Despite the immense medical implications, the genetic and molecular basis of this diversity remains largely unknown2. Studies of in vitro gene expression have found few transcriptional differences between different parasite strains3. Here we present a large study of in vivo expression profiles of parasites derived directly from blood samples from infected patients. The in vivo expression profiles define three distinct transcriptional states. The biological basis of these states can be interpreted by comparison with an extensive compendium of expression data in the yeast Saccharomyces cerevisiae. The three states in vivo closely resemble, first, active growth based on glycolytic metabolism, second, a starvation response accompanied by metabolism of alternative carbon sources, and third, an environmental stress response. The glycolytic state is highly similar to the known profile of the ring stage in vitro, but the other states have not been observed in vitro. The results reveal a previously unknown physiological diversity in the in vivo biology of the malaria parasite, in particular evidence for a functional mitochondrion in the asexual-stage parasite, and indicate in vivo and in vitro studies to determine how this variation may affect disease manifestations and treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: P. falciparum expression profiles in vivo.
Figure 2: Physiological characterization of Plasmodium profiles by cross-species projection.
Figure 3: Gene-set enrichment analysis of P. falciparum clusters.
Figure 4: Induction of respiratory metabolism and repression of glycolysis in cluster 1 versus cluster 2.
Figure 5: Expression of glycolysis, tricarboxylic acid cycle and fatty acid metabolism genes in clusters 1 and 2.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The array data are deposited in the Gene Expression Omnibus under accession number GSE9152.

References

  1. White, N. in Manson’s Tropical Diseases 21st edn (eds Cook, G. C. & Zumla, A. I.) 1205–1295 (Elsevier Science and W. B. Saunders, Edinburgh, 2002)

    Google Scholar 

  2. Greenwood, B., Marsh, K. & Snow, R. Why do some African children develop severe malaria? Parasitol. Today 7, 277–281 (1991)

    Article  CAS  Google Scholar 

  3. Llinas, M., Bozdech, Z., Wong, E. D., Adai, A. T. & DeRisi, J. L. Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains. Nucleic Acids Res. 34, 1166–1173 (2006)

    Article  CAS  Google Scholar 

  4. Daily, J. P. et al. In vivo transcriptional profiling of P. falciparum . Malar. J. 3, 30 (2004)

    Article  Google Scholar 

  5. Daily, J. P. et al. In vivo transcriptome of Plasmodium falciparum reveals overexpression of transcripts that encode surface proteins. J. Infect. Dis. 191, 1196–1203 (2005)

    Article  CAS  Google Scholar 

  6. Brunet, J. P., Tamayo, P., Golub, T. R. & Mesirov, J. P. Metagenes and molecular pattern discovery using matrix factorization. Proc. Natl Acad. Sci. USA 101, 4164–4169 (2004)

    Article  CAS  ADS  Google Scholar 

  7. Le Roch, K. G. et al. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301, 1503–1508 (2003)

    Article  CAS  ADS  Google Scholar 

  8. Bozdech, Z. et al. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum . PLoS Biol. 1, E5 (2003)

    Article  Google Scholar 

  9. Young, J. A. et al. The Plasmodium falciparum sexual development transcriptome: a microarray analysis using ontology-based pattern identification. Mol. Biochem. Parasitol. 143, 67–79 (2005)

    Article  CAS  Google Scholar 

  10. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005)

    Article  CAS  ADS  Google Scholar 

  11. Hansen, M., Kun, J. F., Schultz, J. E. & Beitz, E. A single, bi-functional aquaglyceroporin in blood-stage Plasmodium falciparum malaria parasites. J. Biol. Chem. 277, 4874–4882 (2002)

    Article  CAS  Google Scholar 

  12. Promeneur, D. et al. Aquaglyceroporin PbAQP during intraerythrocytic development of the malaria parasite Plasmodium berghei . Proc. Natl Acad. Sci. USA 104, 2211–2216 (2007)

    Article  CAS  ADS  Google Scholar 

  13. Yeh, I., Hanekamp, T., Tsoka, S., Karp, P. D. & Altman, R. B. Computational analysis of Plasmodium falciparum metabolism: organizing genomic information to facilitate drug discovery. Genome Res. 14, 917–924 (2004)

    Article  CAS  Google Scholar 

  14. Lang-Unnasch, N. & Murphy, A. D. Metabolic changes of the malaria parasite during the transition from the human to the mosquito host. Annu. Rev. Microbiol. 52, 561–590 (1998)

    Article  CAS  Google Scholar 

  15. Uyemura, S. A., Luo, S., Vieira, M., Moreno, S. N. & Docampo, R. Oxidative phosphorylation and rotenone-insensitive malate- and NADH-quinone oxidoreductases in Plasmodium yoelii yoelii mitochondria in situ . J. Biol. Chem. 279, 385–393 (2004)

    Article  CAS  Google Scholar 

  16. Tsai, A. G., Johnson, P. C. & Intaglietta, M. Oxygen gradients in the microcirculation. Physiol. Rev. 83, 933–963 (2003)

    Article  CAS  Google Scholar 

  17. Planche, T. & Krishna, S. Severe malaria: metabolic complications. Curr. Mol. Med. 6, 141–153 (2006)

    Article  CAS  Google Scholar 

  18. Ockenhouse, C. F. et al. Common and divergent immune response signaling pathways discovered in peripheral blood mononuclear cell gene expression patterns in presymptomatic and clinically apparent malaria. Infect. Immun. 74, 5561–5573 (2006)

    Article  CAS  Google Scholar 

  19. Lyke, K. E. et al. Serum levels of the proinflammatory cytokines interleukin-1β (IL-1β), IL-6, IL-8, IL-10, tumor necrosis factor α, and IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated malaria or healthy controls. Infect. Immun. 72, 5630–5637 (2004)

    Article  CAS  Google Scholar 

  20. Udomsangpetch, R. et al. Febrile temperatures induce cytoadherence of ring-stage Plasmodium falciparum-infected erythrocytes. Proc. Natl Acad. Sci. USA 99, 11825–11829 (2002)

    Article  CAS  ADS  Google Scholar 

  21. Olesen, J., Hahn, S. & Guarente, L. Yeast HAP2 and HAP3 activators both bind to the CYC1 upstream activation site, UAS2, in an interdependent manner. Cell 51, 953–961 (1987)

    Article  CAS  Google Scholar 

  22. Becker, D. M., Fikes, J. D. & Guarente, L. A cDNA encoding a human CCAAT-binding protein cloned by functional complementation in yeast. Proc. Natl Acad. Sci. USA 88, 1968–1972 (1991)

    Article  CAS  ADS  Google Scholar 

  23. Krungkrai, J., Prapunwattana, P. & Krungkrai, S. R. Ultrastructure and function of mitochondria in gametocytic stage of Plasmodium falciparum . Parasite 7, 19–26 (2000)

    Article  CAS  Google Scholar 

  24. Mahan, M. J., Slauch, J. M. & Mekalanos, J. J. Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259, 686–688 (1993)

    Article  CAS  ADS  Google Scholar 

  25. Tamayo, P. et al. Metagene projection for cross-platform, cross-species characterization of global transcriptional states. Proc. Natl Acad. Sci. USA 104, 5959–5964 (2007)

    Article  CAS  ADS  Google Scholar 

  26. Marion, R. M. et al. Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression. Proc. Natl Acad. Sci. USA 101, 14315–14322 (2004)

    Article  CAS  ADS  Google Scholar 

  27. Faye, O. et al. Comparison of the transmission of malaria in 2 epidemiological patterns in Senegal: the Sahel border and the Sudan-type savanna. Dakar Med. 40, 201–207 (1995)

    CAS  PubMed  Google Scholar 

  28. Zhou, Y. & Abagyan, R. Match-Only Integral Distribution (MOID) algorithm for high-density oligonucleotide array analysis. BMC Bioinformatics 3, 3 (2002)

    Article  Google Scholar 

  29. Reich, M. et al. GenePattern 2.0. Nature Genet. 38, 500–501 (2006)

    Article  CAS  Google Scholar 

  30. Kanehisa, M. A database for post-genome analysis. Trends Genet. 13, 375–376 (1997)

    Article  CAS  Google Scholar 

  31. Ginsburg, H. Progress in in silico functional genomics: the Malaria Metabolic Pathways database. Trends Parasitol. 22, 238–240 (2006)

    Article  CAS  Google Scholar 

  32. Bahl, A. et al. PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res. 31, 212–215 (2003)

    Article  CAS  Google Scholar 

  33. Zhou, Y. et al. In silico gene function prediction using ontology-based pattern identification. Bioinformatics 21, 1237–1245 (2005)

    Article  Google Scholar 

  34. Segal, E., Friedman, N., Koller, D. & Regev, A. A module map showing conditional activity of expression modules in cancer. Nature Genet. 36, 1090–1098 (2004)

    Article  CAS  Google Scholar 

  35. Ashburner, M., Mungall, C. J. & Lewis, S. E. Ontologies for biologists: a community model for the annotation of genomic data. Cold Spring Harb. Symp. Quant. Biol. 68, 227–235 (2003)

    Article  CAS  Google Scholar 

  36. Karp, P. D. et al. Expansion of the BioCyc collection of pathway/genome databases to 160 genomes. Nucleic Acids Res. 33, 6083–6089 (2005)

    Article  CAS  Google Scholar 

  37. Mewes, H. W. et al. MIPS: analysis and annotation of proteins from whole genomes in 2005. Nucleic Acids Res. 34, D169–D172 (2006)

    Article  CAS  Google Scholar 

  38. Harbison, C. T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004)

    Article  CAS  ADS  Google Scholar 

  39. Gerber, A. P., Herschlag, D. & Brown, P. O. Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol. 2, E79 (2004)

    Article  Google Scholar 

  40. Snounou, G. et al. Biased distribution of msp1 and msp2 allelic variants in Plasmodium falciparum populations in Thailand. Trans. R. Soc. Trop. Med. Hyg. 93, 369–374 (1999)

    Article  CAS  Google Scholar 

  41. Happi, C. T. et al. Molecular analysis of Plasmodium falciparum recrudescent malaria infections in children treated with chloroquine in Nigeria. Am. J. Trop. Med. Hyg. 70, 20–26 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the villagers and health care workers in Velingara, Senegal, for their participation in and support of this project; T. Taylor for critical advice and encouragement; G. Chechik, N. Barkai and O. Rando for providing parts of the compiled expression compendium for S. cerevisiae; and J. Bistline for assistance with the figures. J.P.D. is supported by the National Institute of Allergy and Infectious Diseases. N.P. is a Henri Benedictus Fellow of the King Baudouin Foundation and the Belgian American Educational Foundation. P.T. is supported by the National Institutes of Health (NIH). D.F.W. is supported by the Ellison Medical Foundation, the NIH, the Exxon Mobil Foundation and the Harvard School of Public Health. E.A.W. is supported by the Keck Foundation, the Novartis Research Foundation and the NIH. J.P.M. and D.S. are supported by the NIH and the National Science Foundation. A.R. is supported by a Career Award at the Scientific Interface from the Burroughs Wellcome Fund. The field work was supported by the Fogarty International from the NIH, the NIH Malaria Diversity grant, the Exxon Mobil Foundation, the Ellison Medical Foundation, the Burroughs–Welcome Fund and the Broad Institute of MIT and Harvard.

Author Contributions. D.S., N.P. and K.L.R. contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J. P. Mesirov or A. Regev.

Supplementary information

Supplementary Information

The file contains Legends to Supplementary Figures 1-7 and Supplementary Tables 1-8; Supplementary Notes 1-2; Supplementary Figures 1-5 and 7; Supplementary Tables 1-4 and 7. (PDF 10117 kb)

Supplementary Table 5

This file contains Supplementary Table 5. (XLS 11 kb)

Supplementary Table 6

This file contains Supplementary Table 6. (XLS 108 kb)

Supplementary Table 8

This file contains Supplementary Table 8. (XLS 52 kb)

Supplementary Figure 6

This file contains Supplementary Figure 6. (PDF 30965 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daily, J., Scanfeld, D., Pochet, N. et al. Distinct physiological states of Plasmodium falciparum in malaria-infected patients. Nature 450, 1091–1095 (2007). https://doi.org/10.1038/nature06311

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature06311

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing