Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants

Abstract

The potential impact of pandemic influenza makes effective measures to limit the spread and morbidity of virus infection a public health priority. Antiviral drugs are seen as essential requirements for control of initial influenza outbreaks caused by a new virus, and in pre-pandemic plans there is a heavy reliance on drug stockpiles. The principal target for these drugs is a virus surface glycoprotein, neuraminidase, which facilitates the release of nascent virus and thus the spread of infection. Oseltamivir (Tamiflu) and zanamivir (Relenza) are two currently used neuraminidase inhibitors that were developed using knowledge of the enzyme structure1,2. It has been proposed that the closer such inhibitors resemble the natural substrate, the less likely they are to select drug-resistant mutant viruses that retain viability3. However, there have been reports of drug-resistant mutant selection in vitro4 and from infected humans5,6. We report here the enzymatic properties and crystal structures of neuraminidase mutants from H5N1-infected patients that explain the molecular basis of resistance. Our results show that these mutants are resistant to oseltamivir but still strongly inhibited by zanamivir owing to an altered hydrophobic pocket in the active site of the enzyme required for oseltamivir binding. Together with recent reports of the viability and pathogenesis of H5N1 (ref. 7) and H1N1 (ref. 8) viruses with neuraminidases carrying these mutations, our results indicate that it would be prudent for pandemic stockpiles of oseltamivir to be augmented by additional antiviral drugs, including zanamivir.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neuraminidase activity monitored using a fluorescent assay.
Figure 2: Structure of N1 neuraminidase complexes.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Structural data have been deposited with the Protein Data Bank with accession codes 3CL0 (His274Tyr–oseltamivir), 3CKZ (His274Tyr–zanamivir) and 3CL2 (Asn294Ser–oseltamivir).

References

  1. Kim, C. U. et al. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J. Am. Chem. Soc. 119, 681–690 (1997)

    Article  CAS  PubMed  Google Scholar 

  2. von Itzstein, M. et al. Rational design of potent sialidase-based inhibitors of influenza virus replication. Nature 363, 418–423 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Varghese, J. N. et al. Drug design against a shifting target: a structural basis for resistance to inhibitors in a variant of influenza virus neuraminidase. Structure 6, 735–746 (1998)

    Article  CAS  PubMed  Google Scholar 

  4. McKimm-Breschkin, J. L. Resistance of influenza viruses to neuraminidase inhibitors–a review. Antiviral Res. 47, 1–17 (2000)

    Article  CAS  PubMed  Google Scholar 

  5. Gubareva, L. V., Webster, R. G. & Hayden, F. G. Comparison of the activities of zanamivir, oseltamivir, and RWJ-270201 against clinical isolates of influenza virus and neuraminidase inhibitor-resistant variants. Antimicrob. Agents Chemother. 45, 3403–3408 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. de Jong, M. D. et al. Oseltamivir resistance during treatment of influenza A (H5N1) infection. N. Engl. J. Med. 353, 2667–2672 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Yen, H. L. et al. Neuraminidase inhibitor-resistant recombinant A/Vietnam/1203/04 (H5N1) influenza viruses retain their replication efficiency and pathogenicity in vitro and in vivo . J. Virol. 81, 12418–12426 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lackenby, A. et al. Emergence of resistance to oseltamivir among influenza A(H1N1) viruses in Europe. Euro Surveill. 13, (2008)

    Article  Google Scholar 

  9. Murphy, B. R. & Webster, R. G. in Fields Virology 3rd edn (eds Fields, D. B. N., Knipe, M. & Howley, P. M.) 1397–1445 (Lippincott-Raven, Philadelphia, 1996)

    Google Scholar 

  10. Varghese, J. N., Laver, W. G. & Colman, P. M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature 303, 35–40 (1983)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Baker, A. T., Varghese, J. N., Laver, W. G., Air, G. M. & Colman, P. M. Three-dimensional structure of neuraminidase of subtype N9 from an avian influenza virus. Proteins 2, 111–117 (1987)

    Article  CAS  PubMed  Google Scholar 

  12. Burmeister, W. P., Henrissat, B., Bosso, C., Cusack, S. & Ruigrok, R. W. Influenza B virus neuraminidase can synthesize its own inhibitor. Structure 1, 19–26 (1993)

    Article  CAS  PubMed  Google Scholar 

  13. Ives, J. et al. Anti-viral drug resistance: An oseltamivir treatment-selected influenza A/N2 virus with a R292K mutation in the neuraminidase gene has reduced infectivity in vivo . J. Clin. Virol. 18, 251–269 (2000)

    Article  Google Scholar 

  14. Ives, J. A. L. et al. The H274Y mutation in the influenza A/H1N1 neuraminidase active site following oseltamivir phosphate treatment leave virus severely compromised both in vitro and in vivo . Antiviral Res. 55, 307–317 (2002)

    Article  CAS  PubMed  Google Scholar 

  15. Herlocher, M. L. et al. Influenza viruses resistant to the antiviral drug oseltamivir: transmission studies in ferrets. J. Infect. Dis. 190, 1627–1630 (2004)

    Article  CAS  PubMed  Google Scholar 

  16. Gubareva, L. V., Kaiser, L., Matrosovich, M. N., Soo-Hoo, Y. & Hayden, F. G. Selection of influenza virus mutants in experimentally infected volunteers treated with oseltamivir. J. Infect. Dis. 183, 523–531 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Kiso, M. et al. Resistant influenza A viruses in children treated with oseltamivir: descriptive study. Lancet 364, 759–765 (2004)

    Article  CAS  PubMed  Google Scholar 

  18. Le, Q. M. et al. Avian flu: isolation of drug-resistant H5N1 virus. Nature 437, 1108 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. McKimm-Breschkin, J. L., Selleck, P. W., Usman, T. B. & Johnson, M. A. Reduced sensitivity of influenza A to oseltamivir. Emerg. Infect. Dis. 13, 1354–1357 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rameix-Welti, M. A. et al. Natural variation can significantly alter the sensitivity of influenza A (H5N1) viruses to oseltamivir. Antimicrob. Agents Chemother. 50, 3809–3815 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, M. Z., Tai, C. Y. & Mendel, D. B. Mechanism by which mutations at His274 alter sensitivity of influenza a virus N1 neuraminidase to oseltamivir carboxylate and zanamivir. Antimicrob. Agents Chemother. 46, 3809–3816 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yen, H. L. et al. Neuraminidase inhibitor-resistant influenza viruses may differ substantially in fitness and transmissibility. Antimicrob. Agents Chemother. 49, 4075–4084 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Smith, B. J. et al. Structural studies of the resistance of influenza virus neuramindase to inhibitors. J. Med. Chem. 45, 2207–2212 (2002)

    Article  CAS  PubMed  Google Scholar 

  24. Varghese, J. N., McKimm-Breschkin, J. L., Caldwell, J. B., Kortt, A. A. & Colman, P. M. The structure of the complex between influenza virus neuraminidase and sialic acid, the viral receptor. Proteins 14, 327–332 (1992)

    Article  CAS  PubMed  Google Scholar 

  25. Russell, R. J. et al. The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443, 45–49 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Cheung, C. L. et al. Distribution of amantadine-resistant H5N1 avian influenza variants in Asia. J. Infect. Dis. 193, 1626–1629 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. Gulick, R. M. et al. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N. Engl. J. Med. 337, 734–739 (1997)

    Article  CAS  PubMed  Google Scholar 

  28. De Clercq, E. The design of drugs for HIV and HCV. Nature Rev. Drug Discov. 6, 1001–1018 (2007)

    Article  CAS  Google Scholar 

  29. Ha, Y., Stevens, D. J., Skehel, J. J. & Wiley, D. C. X-ray structures of H5 avian and H9 swine influenza virus hemagglutinins bound to avian and human receptor analogs. Proc. Natl Acad. Sci. USA 98, 11181–11186 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tai, C. Y. et al. Characterization of human influenza virus variants selected in vitro in the presence of the neuraminidase inhibitor GS 4071. Antimicrob. Agents Chemother. 42, 3234–3241 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Otwinowski, Z. & Minor, W. in Data Collection and Processing (eds Sawyer, L., Isaacs, N. & Bailey, S.) 556–562 (SERC Daresbury Laboratory, Warrington, 1993)

    Google Scholar 

  32. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  33. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  PubMed  Google Scholar 

  34. Jones, T. A., Zhou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991)

    Article  PubMed  Google Scholar 

  35. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Work at NIMR was funded by the Medical Research Council (UK). This work was also supported in part by the EU FP6 Programme VIRGIL, contract number 503359. R.J.R. thanks the Scottish Funding Council for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Gamblin.

Supplementary information

Supplementary Information

The file contains Supplementary Notes, Supplementary Figures S1-S2 with Legends and Supplementary Table 1 and additional references. (PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collins, P., Haire, L., Lin, Y. et al. Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants. Nature 453, 1258–1261 (2008). https://doi.org/10.1038/nature06956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nature06956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing