Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation

Abstract

The non-receptor tyrosine kinase Abl participates in receptor tyrosine kinase (RTK)-induced actin cytoskeleton remodelling, a signalling pathway in which the function of Rac is pivotal. More importantly, the activity of Rac is indispensable for the leukaemogenic ability of the BCR-Abl oncoprotein. Thus, Rac might function downstream of Abl and be activated by it. Here, we elucidate the molecular mechanisms through which Abl signals to Rac in RTK-activated pathways. We show that Sos-1, a dual guanine nucleotide-exchange factor (GEF), is phosphorylated on tyrosine, after activation of RTKs, in an Abl-dependent manner. Sos-1 and Abl interact in vivo, and Abl-induced tyrosine phosphorylation of Sos-1 is sufficient to elicit its Rac-GEF activity in vitro. Genetic or pharmacological interference with Abl (and the related kinase Arg) resulted in a marked decrease in Rac activation induced by physiological doses of growth factors. Thus, our data identify the molecular connections of a pathway RTKs–Abl–Sos-1–Rac that is involved in signal transduction and actin remodelling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RTK activation induces tyrosine phosphorylation of Sos-1 in an Abl-dependent manner.
Figure 2: Tyrosine phosphorylation of Sos-1 induces its Rac-GEF activity.
Figure 3: Tyrosine phosphorylation is required to elicit the Rac-specific GEF activity of Sos-1.
Figure 4: Interference of Abl impairs PDGF- and EGF-induced ruffling and re-activation.

Similar content being viewed by others

References

  1. Plattner, R., Kadlec, L., DeMali, K.A., Kazlauskas, A. & Pendergast, A.M. c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev. 13, 2400–2411 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Koleske, A.J. et al. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21, 1259–1272 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Woodring, P.J. et al. Modulation of the F-actin cytoskeleton by c-Abl tyrosine kinase in cell spreading and neurite extension. J. Cell Biol. 156, 879–892 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Renshaw, M.W., Lea-Chou, E. & Wang, J.Y. Rac is required for v-Abl tyrosine kinase to activate mitogenesis. Curr. Biol. 6, 76–83 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Melo, J.V. The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88, 2375–2384 (1996).

    CAS  PubMed  Google Scholar 

  6. Skorski, T. et al. The SH3 domain contributes to BCR/ABL-dependent leukemogenesis in vivo: role in adhesion, invasion, and homing. Blood 91, 406–418 (1998).

    CAS  PubMed  Google Scholar 

  7. Hall, A. Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt, A. & Hall, A. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587–1609 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Fleming, I.N., Elliott, C.M., Buchanan, F.G., Downes, C.P. & Exton, J.H. Ca2+/calmodulin-dependent protein kinase II regulates Tiam1 by reversible protein phosphorylation. J. Biol. Chem. 274, 12753–12758 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Crespo, P., Schuebel, K.E., Ostrom, A.A., Gutkind, J.S. & Bustelo, X.R. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385, 169–172 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Kiyono, M., Satoh, T. & Kaziro, Y. G protein beta gamma subunit-dependent Rac-guanine nucleotide exchange activity of Ras-GRF1/CDC25(Mm). Proc. Natl Acad. Sci. USA 96, 4826–4831 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aghazadeh, B., Lowry, W.E., Huang, X.Y. & Rosen, M.K. Structural basis for relief of autoinhibition of the Dbl homology domain of proto-oncogene Vav by tyrosine phosphorylation. Cell 102, 625–633 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Scita, G. et al. EPS8 and E3B1 transduce signals from Ras to Rac. Nature 401, 290–293 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Mettouchi, A. et al. Integrin-specific activation of Rac controls progression through the G(1) phase of the cell cycle. Mol Cell 8, 115–127 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Lewis, J.M., Baskaran, R., Taagepera, S., Schwartz, M.A. & Wang, J.Y. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic- nuclear transport. Proc. Natl Acad. Sci. USA 93, 15174–15179 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wedegaertner, P.B. & Gill, G.N. Effect of carboxyl terminal truncation on the tyrosine kinase activity of the epidermal growth factor receptor. Arch. Biochem. Biophys. 292, 273–280 (1992).

    Article  CAS  PubMed  Google Scholar 

  17. Walton, G.M., Chen, W.S., Rosenfeld, M.G. & Gill, G.N. Analysis of deletions of the carboxyl terminus of the epidermal growth factor receptor reveals self-phosphorylation at tyrosine 992 and enhanced in vivo tyrosine phosphorylation of cell substrates. J. Biol. Chem. 265, 1750–1754 (1990).

    CAS  PubMed  Google Scholar 

  18. Shi, Y., Alin, K. & Goff, S.P. Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity. Genes Dev. 9, 2583–2597 (1995).

    Article  CAS  PubMed  Google Scholar 

  19. Dai, Z. & Pendergast, A.M. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev. 9, 2569–2582 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Pluk, H., Dorey, K. & Superti-Furga, G. Autoinhibition of c-Abl. Cell 108, 247–259 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Pendergast, A.M. et al. Evidence for regulation of the human ABL tyrosine kinase by a cellular inhibitor. Proc. Natl Acad. Sci. USA 88, 5927–5931 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mayer, B.J. & Baltimore, D. Mutagenic analysis of the roles of SH2 and SH3 domains in regulation of the Abl tyrosine kinase. Mol. Cell. Biol. 14, 2883–2894 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Innocenti, M. et al. Mechanisms through which Sos-1 coordinates the activation of Ras and Rac. J. Cell Biol. 156, 125–136 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Juang, J.L. & Hoffmann, F.M. Drosophila abelson interacting protein (dAbi) is a positive regulator of abelson tyrosine kinase activity. Oncogene 18, 5138–5147 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Fazioli, F. et al. Eps8, a substrate for the epidermal growth factor receptor kinase, enhances EGF-dependent mitogenic signals. EMBO J. 12, 3799–3808 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Biesova, Z., Piccoli, C. & Wong, W.T. Isolation and characterization of e3B1, an eps8 binding protein that regulates cell growth. Oncogene 14, 233–241 (1997).

    Article  CAS  PubMed  Google Scholar 

  27. Tanis, K.Q., Veach, D., Duewel, H.S., Bornmann, W.G. & Koleske, A.J. Two distinct phosphorylation pathways have additive effects on Abl family kinase activation. Mol. Cell. Biol. 23, 3884–3896 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sastry, L. et al. Quantitative analysis of Grb2–Sos1 interaction: the N-terminal SH3 domain of Grb2 mediates affinity. Oncogene 11, 1107–1112 (1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Frittoli and I. Ponzanelli for technical assistance, and M. A. Pearson for critically reading the manuscript. This work was supported by grants from: Associazione Italiana Ricerca sul Cancro (AIRC) to G.S. and P.P.D.F.; Telethon Foundation, the Consiglio Nazionale delle Ricerche (Target project Biotechnology) and the European Community (V and VI Framework) to P.P.D.F.; the Swiss National Science foundation to A.C.; and the Italian Ministry of Health (Grant R.F. 02/184) to G.S.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pier Paolo Di Fiore or Giorgio Scita.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary figures

Supplementary Information, Fig. S1 (PDF 486 kb)

Supplementary Information, Fig. S2

Supplementary Information, Fig. S3

Supplementary Information, Fig. S4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sini, P., Cannas, A., Koleske, A. et al. Abl-dependent tyrosine phosphorylation of Sos-1 mediates growth-factor-induced Rac activation. Nat Cell Biol 6, 268–274 (2004). https://doi.org/10.1038/ncb1096

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/ncb1096

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing