Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Induction of innate and adaptive immunity by delivery of poly dA:dT to dendritic cells

Abstract

Targeted delivery of antigens to dendritic cells (DCs) is a promising vaccination strategy. However, to ensure immunity, the approach depends on coadministration of an adjuvant. Here we ask whether targeting of both adjuvant and antigen to DCs is sufficient to induce immunity. Using a protein ligation method, we develop a general approach for linking the immune stimulant, poly dA:dT (pdA:dT), to a monoclonal antibody (mAb) specific for DEC205 (DEC). We show that DEC-specific mAbs deliver pdA:dT to DCs for the efficient production of type I interferon in human monocyte-derived DCs and in mice. Notably, adaptive T-cell immunity is elicited when mAbs specific for DEC–pdA:dT are used as the activation stimuli and are administered together with a DC-targeted antigen. Collectively, our studies indicate that DCs can integrate innate and adaptive immunity in vivo and suggest that dual delivery of antigen and adjuvant to DCs might be an efficient approach to vaccine development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design and synthesis of anti–DEC-pdA:dT.
Figure 2: Anti–hDEC-pdA:dT activates human MoDCs.
Figure 3: RIG-I is necessary for DCs activation by anti–hDEC-pdA:dT.
Figure 4: Anti–mDEC-pdA:dT triggers type I IFN production in vivo.
Figure 5: DCs drive bulk production of type I IFN triggered by anti–mDEC-pdA:dT.
Figure 6: Delivery of adjuvant and antigen to DCs induces adaptive immune responses.

Similar content being viewed by others

References

  1. Ebensen, T. & Guzman, C.A. Immune modulators with defined molecular targets: cornerstone to optimize rational vaccine design. Hum. Vaccin. 4, 13–22 (2008).

    CAS  PubMed  Google Scholar 

  2. Pulendran, B. & Ahmed, R. Translating innate immunity into immunological memory: implications for vaccine development. Cell 124, 849–863 (2006).

    CAS  PubMed  Google Scholar 

  3. Kawai, T. & Akira, S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34, 637–650 (2011).

    Article  CAS  Google Scholar 

  4. Yoneyama, M. & Fujita, T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol. Rev. 227, 54–65 (2009).

    CAS  PubMed  Google Scholar 

  5. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Kawai, T. & Akira, S. The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21, 317–337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Barber, G.N. Cytoplasmic DNA innate immune pathways. Immunol. Rev. 243, 99–108 (2011).

    CAS  PubMed  Google Scholar 

  8. Stetson, D.B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    CAS  Google Scholar 

  9. Okabe, Y., Kawane, K., Akira, S., Taniguchi, T. & Nagata, S. Toll-like receptor–independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med. 202, 1333–1339 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ishii, K.J. et al. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7, 40–48 (2006).

    CAS  PubMed  Google Scholar 

  11. Ablasser, A. et al. RIG-I–dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III–transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009).

    CAS  PubMed  Google Scholar 

  12. Chiu, Y.H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Trumpfheller, C. et al. Dendritic cell–targeted protein vaccines: a novel approach to induce T-cell immunity. J. Intern. Med. 271, 183–192 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Idoyaga, J., Suda, N., Suda, K., Park, C.G. & Steinman, R.M. Antibody to Langerin/CD207 localizes large numbers of CD8α+ dendritic cells to the marginal zone of mouse spleen. Proc. Natl. Acad. Sci. USA 106, 1524–1529 (2009).

    CAS  PubMed  Google Scholar 

  15. Bonifaz, L.C. et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J. Exp. Med. 199, 815–824 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Trumpfheller, C. et al. Intensified and protective CD4+ T cell immunity in mice with anti-dendritic cell HIV gag fusion antibody vaccine. J. Exp. Med. 203, 607–617 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Idoyaga, J. et al. Comparable T helper 1 (TH1) and CD8 T-cell immunity by targeting HIV gag p24 to CD8 dendritic cells within antibodies to Langerin, DEC205, and Clec9A. Proc. Natl. Acad. Sci. USA 108, 2384–2389 (2011).

    CAS  PubMed  Google Scholar 

  18. Longhi, M.P. et al. Dendritic cells require a systemic type I interferon response to induce CD4+ TH1 immunity with poly IC as adjuvant. J. Exp. Med. 206, 1589–1602 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lampkin, B.C., Levine, A.S., Levy, H., Krivit, W. & Hammond, D. Phase II trial of a complex polyriboinosinic-polyribocytidylic acid with poly-l-lysine and carboxymethyl cellulose in the treatment of children with acute leukemia and neuroblastoma: a report from the Children's Cancer Study Group. Cancer Res. 45, 5904–5909 (1985).

    CAS  PubMed  Google Scholar 

  20. Batista-Duharte, A., Lindblad, E.B. & Oviedo-Orta, E. Progress in understanding adjuvant immunotoxicity mechanisms. Toxicol. Lett. 203, 97–105 (2011).

    CAS  PubMed  Google Scholar 

  21. Muir, T.W., Sondhi, D. & Cole, P.A. Expressed protein ligation: a general method for protein engineering. Proc. Natl. Acad. Sci. USA 95, 6705–6710 (1998).

    CAS  Google Scholar 

  22. Muir, T.W. Semisynthesis of proteins by expressed protein ligation. Annu. Rev. Biochem. 72, 249–289 (2003).

    CAS  PubMed  Google Scholar 

  23. Muralidharan, V. & Muir, T.W. Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat. Methods 3, 429–438 (2006).

    CAS  PubMed  Google Scholar 

  24. Kis-Toth, K., Szanto, A., Thai, T.H. & Tsokos, G.C. Cytosolic DNA-activated human dendritic cells are potent activators of the adaptive immune response. J. Immunol. 187, 1222–1234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Singla, N., Himanen, J.P., Muir, T.W. & Nikolov, D.B. Toward the semisynthesis of multidomain transmembrane receptors: modification of Eph tyrosine kinases. Protein Sci. 17, 1740–1747 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Idoyaga, J. et al. Langerin/CD207 receptor on dendritic cells mediates efficient antigen presentation on MHC I and II products in vivo. J. Immunol. 180, 3647–3650 (2008).

    CAS  PubMed  Google Scholar 

  27. Lovrinovic, M. & Niemeyer, C.M. Rapid synthesis of DNA-cysteine conjugates for expressed protein ligation. Biochem. Biophys. Res. Commun. 335, 943–948 (2005).

    CAS  PubMed  Google Scholar 

  28. Burbulis, I., Yamaguchi, K., Yu, R., Resnekov, O. & Brent, R. Quantifying small numbers of antibodies with a 'near-universal' protein-DNA chimera. Nat. Methods 4, 1011–1013 (2007).

    CAS  PubMed  Google Scholar 

  29. Kotlyar, A.B., Borovok, N., Molotsky, T., Fadeev, L. & Gozin, M. In vitro synthesis of uniform poly(dG)-poly(dC) by Klenow exo- fragment of polymerase I. Nucleic Acids Res. 33, 525–535 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Katashiba, Y. et al. Interferon-α and interleukin-12 are induced, respectively, by double-stranded DNA and single-stranded RNA in human myeloid dendritic cells. Immunology 132, 165–173 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Witmer-Pack, M.D., Swiggard, W.J., Mirza, A., Inaba, K. & Steinman, R.M. Tissue distribution of the DEC-205 protein that is detected by the monoclonal antibody NLDC-145. II. Expression in situ in lymphoid and nonlymphoid tissues. Cell Immunol. 163, 157–162 (1995).

    CAS  PubMed  Google Scholar 

  32. Bar-On, L. & Jung, S. Defining in vivo dendritic cell functions using CD11c-DTR transgenic mice. Methods Mol. Biol. 595, 429–442 (2010).

    CAS  PubMed  Google Scholar 

  33. Belz, G.T. & Nutt, S.L. Transcriptional programming of the dendritic cell network. Nat. Rev. Immunol. 12, 101–113 (2012).

    CAS  PubMed  Google Scholar 

  34. Mata, M., Travers, P.J., Liu, Q., Frankel, F.R. & Paterson, Y. The MHC class I–restricted immune response to HIV-gag in BALB/c mice selects a single epitope that does not have a predictable MHC-binding motif and binds to Kd through interactions between a glutamine at P3 and pocket D. J. Immunol. 161, 2985–2993 (1998).

    CAS  PubMed  Google Scholar 

  35. Rötzschke, O. et al. Exact prediction of a natural T cell epitope. Eur. J. Immunol. 21, 2891–2894 (1991).

    PubMed  Google Scholar 

  36. Nolte, M.A., LeibundGut-Landmann, S., Joffre, O. & Reis e Sousa, C. Dendritic cell quiescence during systemic inflammation driven by LPS stimulation of radioresistant cells in vivo. J. Exp. Med. 204, 1487–1501 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Sano, T., Smith, C.L. & Cantor, C.R. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Science 258, 120–122 (1992).

    CAS  PubMed  Google Scholar 

  38. Hendrickson, E.R., Truby, T.M., Joerger, R.D., Majarian, W.R. & Ebersole, R.C. High sensitivity multianalyte immunoassay using covalent DNA-labeled antibodies and polymerase chain reaction. Nucleic Acids Res. 23, 522–529 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. McKie, A., Samuel, D., Cohen, B. & Saunders, N.A. Development of a quantitative immuno-PCR assay and its use to detect mumps-specific IgG in serum. J. Immunol. Methods 261, 167–175 (2002).

    CAS  PubMed  Google Scholar 

  40. Niemeyer, C.M. Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. Angew. Chem. Int. Ed. Engl. 49, 1200–1216 (2010).

    CAS  PubMed  Google Scholar 

  41. Kreutz, M. et al. Antibody-antigen-adjuvant conjugates enable co-delivery of antigen and adjuvant to dendritic cells in cis but only have partial targeting specificity. PLoS ONE 7, e40208 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Niemeyer, C.M., Wacker, R. & Adler, M. Combination of DNA-directed immobilization and immuno-PCR: very sensitive antigen detection by means of self-assembled DNA-protein conjugates. Nucleic Acids Res. 31, e90 (2003).

    PubMed  PubMed Central  Google Scholar 

  43. Möhlmann, S., Bringmann, P., Greven, S. & Harrenga, A. Site-specific modification of ED-B–targeting antibody using intein-fusion technology. BMC Biotechnol. 11, 76 (2011).

    PubMed  PubMed Central  Google Scholar 

  44. Vila-Perelló, M. et al. Streamlined expressed protein ligation using split inteins. J. Am. Chem. Soc. 135, 286–292 (2013).

    PubMed  Google Scholar 

  45. Flinsenberg, T.W., Compeer, E.B., Boelens, J.J. & Boes, M. Antigen cross-presentation: extending recent laboratory findings to therapeutic intervention. Clin. Exp. Immunol. 165, 8–18 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Lin, M.L., Zhan, Y., Villadangos, J.A. & Lew, A.M. The cell biology of cross-presentation and the role of dendritic cell subsets. Immunol. Cell Biol. 86, 353–362 (2008).

    CAS  PubMed  Google Scholar 

  47. Ueno, H. et al. Harnessing human dendritic cell subsets for medicine. Immunol. Rev. 234, 199–212 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bozzacco, L. et al. DEC-205 receptor on dendritic cells mediates presentation of HIV gag protein to CD8+ T cells in a spectrum of human MHC I haplotypes. Proc. Natl. Acad. Sci. USA 104, 1289–1294 (2007).

    CAS  PubMed  Google Scholar 

  49. Spörri, R. & Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol. 6, 163–170 (2005).

    PubMed  Google Scholar 

  50. Tacken, P.J. et al. Targeted delivery of TLR ligands to human and mouse dendritic cells strongly enhances adjuvanticity. Blood 118, 6836–6844 (2011).

    CAS  PubMed  Google Scholar 

  51. Wagner-Rousset, E. et al. The way forward, enhanced characterization of therapeutic antibody glycosylation: comparison of three level mass spectrometry-based strategies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 872, 23–37 (2008).

    CAS  PubMed  Google Scholar 

  52. Dillon, T.M. et al. Optimization of a reversed-phase high-performance liquid chromatography/mass spectrometry method for characterizing recombinant antibody heterogeneity and stability. J. Chromatogr. A 1120, 112–120 (2006).

    CAS  PubMed  Google Scholar 

  53. Sasai, M. et al. NAK-associated protein 1 participates in both the TLR3 and the cytoplasmic pathways in type I IFN induction. J. Immunol. 177, 8676–8683 (2006).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank members of the Steinman and Muir laboratories for many valuable discussions. Funding was provided by National Institutes of Health Grants GM086868 (to T.W.M.), AI013013 (to R.M.S.), a Foundation for the National Institutes of Health Gates Foundation grant no. 334 (to R.M.S.) and a graduate fellowship to S. Barbuto by NIH MSTP grant GM07739.

Author information

Authors and Affiliations

Authors

Contributions

R.M.S. and T.W.M. conceived the original idea and contributed equally to this manuscript. T.W.M., S.B. and M.V.-P. contributed to the design and discussion of the chemical work; R.M.S., S.B. and J.I. contributed to the design and discussion of the biological work; S.B. and M.V.-P. synthesized and characterized mAb–pdA:dT conjugates; S.B. performed experiments with MoDCs with help from G.B.; S.B. and J.I. performed experiments in vivo with help and advice from M.P.L.; S.B., J.I. and M.V.-P. analyzed data and prepared figures; S.B., J.I., M.V.-P. and T.W.M. wrote the manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Tom W Muir.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 2298 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbuto, S., Idoyaga, J., Vila-Perelló, M. et al. Induction of innate and adaptive immunity by delivery of poly dA:dT to dendritic cells. Nat Chem Biol 9, 250–256 (2013). https://doi.org/10.1038/nchembio.1186

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nchembio.1186

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research