Figure 1: Unified picture of relevant particles and their spin-dependent reactions. | Nature Communications

Figure 1: Unified picture of relevant particles and their spin-dependent reactions.

From: Tuning organic magnetoresistance in polymer-fullerene blends by controlling spin reaction pathways

Figure 1

(a) Possible polaron pairs in an organic semiconductor as a function of energy. Free charges can form precursor pairs in a singlet (S) 1( ) or triplet (T) 3( ) configuration. From this pair state, the precursor pair can either recombine into a S or T exciton (in the case of an e–h pair), a S bipolaron (in the case of a bipolaron pair) or dissociate back into free carriers again. Because of hyperfine fields (hf) the S and T precursor pairs can mix and an external magnetic field can suppress this mixing. The magnetic field-dependent transitions between the pair states are indicated with curved arrows. The energy levels and possible mixing mechanisms of a CTS are also included in the diagram (shaded area). Electrons and holes are interchangeable in this diagram. (b) The characteristic low (red) and high (blue) field lineshapes of the (i) bipolaron, (ii) e–h and (iii) triplet–polaron mechanism, all according to explicit calculations using a density matrix formalism.

Back to article page