Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immune mechanisms in malaria: new insights in vaccine development

Abstract

Early data emerging from the first phase 3 trial of a malaria vaccine are raising hopes that a licensed vaccine will soon be available for use in endemic countries, but given the relatively low efficacy of the vaccine, this needs to be seen as a major step forward on the road to a malaria vaccine rather than as arrival at the final destination. The focus for vaccine developers now moves to the next generation of malaria vaccines, but it is not yet clear what characteristics these new vaccines should have or how they can be evaluated. Here we briefly review the epidemiological and immunological requirements for malaria vaccines and the recent history of malaria vaccine development and then put forward a manifesto for future research in this area. We argue that rational design of more effective malaria vaccines will be accelerated by a better understanding of the immune effector mechanisms involved in parasite regulation, control and elimination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Life cycle of Plasmodium spp.

Katie Vicari

Figure 2: Induction of humoral and T cell–mediated immune responses against malaria.

Claire Cessford

Figure 3: Malaria vaccine approaches: aims and required immune responses.

Katie Vicari

Similar content being viewed by others

References

  1. World Health Organization. World malaria report 2011. World Health Organization. <http://www.who.int/malaria/world_malaria_report_2011/9789241564403_eng.pdf> (2011).

  2. Murray, C.J. et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet 379, 413–431 (2012).

    Article  PubMed  Google Scholar 

  3. Umbers, A.J., Aitken, E.H. & Rogerson, S.J. Malaria in pregnancy: small babies, big problem. Trends Parasitol. 27, 168–175 (2011).

    Article  PubMed  Google Scholar 

  4. Cox-Singh, J. et al. Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening. Clin. Infect. Dis. 46, 165–171 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. O'Brien, C., Henrich, P.P., Passi, N. & Fidock, D.A. Recent clinical and molecular insights into emerging artemisinin resistance in Plasmodium falciparum. Curr. Opin. Infect. Dis. 24, 570–577 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McNamara, C. & Winzeler, E.A. Target identification and validation of novel antimalarials. Future Microbiol. 6, 693–704 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 27, 91–98 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Bousema, T. & Drakeley, C. Epidemiology and infectivity of Plasmodium falciparum and Plasmodium vivax gametocytes in relation to malaria control and elimination. Clin. Microbiol. Rev. 24, 377–410 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Malaria Vaccine Technology Roadmap. Malaria vaccine technology roadmap. PATH Malaria Vaccine Initiative. <http://www.malariavaccine.org/files/Malaria_Vaccine_TRM_Final_000.pdf> (2006).

  10. Bill and Melinda Gates Foundation. Malaria strategy overview. Bill and Melinda Gates Foundation. <http://www.gatesfoundation.org/malaria/Documents/malaria-strategy.pdf> (2011).

  11. Agnandji, S.T. et al. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N. Engl. J. Med. 365, 1863–1875 (2011).

    Article  PubMed  Google Scholar 

  12. RTS,S Clinical Trials Partnership. A phase 3 trial of RTS,S/AS01 malaria vaccine in African infants. N. Engl. J. Med. 367, 2284–2295 (2012).

  13. Alonso, P.L. & Tanner, M. Public health challenges and prospects for malaria control and elimination. Nat. Med. 19, 150–155 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. Casares, S., Brumeanu, T.D. & Richie, T.L. The RTS,S malaria vaccine. Vaccine 28, 4880–4894 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. Garçon, N. & Van Mechelen, M. Recent clinical experience with vaccines using MPL- and QS-21-containing adjuvant systems. Expert Rev. Vaccines 10, 471–486 (2011).

    Article  CAS  PubMed  Google Scholar 

  16. Regules, J.A., Cummings, J.F. & Ockenhouse, C.F. The RTS,S vaccine candidate for malaria. Expert Rev. Vaccines 10, 589–599 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Kester, K.E. et al. Randomized, double-blind, phase 2a trial of falciparum malaria vaccines RTS,S/AS01B and RTS,S/AS02A in malaria-naive adults: safety, efficacy, and immunologic associates of protection. J. Infect. Dis. 200, 337–346 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Stoute, J.A. et al. A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation Group. N. Engl. J. Med. 336, 86–91 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Stoute, J.A. et al. Long-term efficacy and immune responses following immunization with the RTS,S malaria vaccine. J. Infect. Dis. 178, 1139–1144 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Olotu, A. et al. Circumsporozoite-specific T cell responses in children vaccinated with RTS,S/AS01E and protection against P falciparum clinical malaria. PLoS ONE 6, e25786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ansong, D. et al. T cell responses to the RTS,S/AS01(E) and RTS,S/AS02(D) malaria candidate vaccines administered according to different schedules to Ghanaian children. PLoS ONE 6, e18891 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lumsden, J.M. et al. Protective immunity induced with the RTS,S/AS vaccine is associated with IL-2 and TNF-α producing effector and central memory CD4 T cells. PLoS ONE 6, e20775 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Agnandji, S.T. et al. Induction of Plasmodium falciparum–specific CD4+ T cells and memory B cells in Gabonese children vaccinated with RTS,S/AS01(E) and RTS,S/AS02(D). PLoS ONE 6, e18559 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horowitz, A. et al. Antigen-specific IL-2 secretion correlates with NK cell responses after immunization of Tanzanian children with the RTS,S/AS01 malaria vaccine. J. Immunol. 188, 5054–5062 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. Brice, G.T. et al. Extended immunization intervals enhance the immunogenicity and protective efficacy of plasmid DNA vaccines. Microbes Infect. 9, 1439–1446 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Elnekave, M., Bivas-Benita, M., Gillard, G.O., Sircar, P. & Hovav, A.H. A matter of timing: unsynchronized antigen expression and antigen presentation diminish secondary T cell responses. J. Immunol. 183, 1013–1021 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Abdulla, S. et al. Safety and immunogenicity of RTS,S/AS02D malaria vaccine in infants. N. Engl. J. Med. 359, 2533–2544 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Obar, J.J. & Lefrancois, L. Early signals during CD8 T cell priming regulate the generation of central memory cells. J. Immunol. 185, 263–272 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. Fousteri, G. et al. Increased memory conversion of naive CD8 T cells activated during late phases of acute virus infection due to decreased cumulative antigen exposure. PLoS ONE 6, e14502 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Croom, H.A. et al. Memory precursor phenotype of CD8+ T cells reflects early antigenic experience rather than memory numbers in a model of localized acute influenza infection. Eur. J. Immunol. 41, 682–693 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Alonso, P.L. et al. Duration of protection with RTS,S/AS02A malaria vaccine in prevention of Plasmodium falciparum disease in Mozambican children: single-blind extended follow-up of a randomised controlled trial. Lancet 366, 2012–2018 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Alonso, P.L. et al. Efficacy of the RTS,S/AS02A vaccine against Plasmodium falciparum infection and disease in young African children: randomised controlled trial. Lancet 364, 1411–1420 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Bejon, P. et al. Efficacy of RTS,S/AS01E vaccine against malaria in children 5 to 17 months of age. N. Engl. J. Med. 359, 2521–2532 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sacarlal, J. et al. Long-term safety and efficacy of the RTS,S/AS02A malaria vaccine in Mozambican children. J. Infect. Dis. 200, 329–336 (2009).

    Article  PubMed  Google Scholar 

  35. Aide, P. et al. Four year immunogenicity of the RTS,S/AS02(A) malaria vaccine in Mozambican children during a phase IIb trial. Vaccine 29, 6059–6067 (2011).

    Article  PubMed  Google Scholar 

  36. Sutherland, C.J., Drakeley, C.J. & Schellenberg, D. How is childhood development of immunity to Plasmodium falciparum enhanced by certain antimalarial interventions? Malar. J. 6, 161 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Takala, S.L. & Plowe, C.V. Genetic diversity and malaria vaccine design, testing and efficacy: preventing and overcoming 'vaccine resistant malaria'. Parasite Immunol. 31, 560–573 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Weedall, G.D. & Conway, D.J. Detecting signatures of balancing selection to identify targets of anti-parasite immunity. Trends Parasitol. 26, 363–369 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Epstein, J.E., Giersing, B., Mullen, G., Moorthy, V. & Richie, T.L. Malaria vaccines: are we getting closer? Curr. Opin. Mol. Ther. 9, 12–24 (2007).

    CAS  PubMed  Google Scholar 

  40. Mackinnon, M.J. & Marsh, K. The selection landscape of malaria parasites. Science 328, 866–871 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. McKenzie, F.E., Smith, D.L., O'Meara, W.P. & Riley, E.M. Strain theory of malaria: the first 50 years. Adv. Parasitol. 66, 1–46 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Dzikowski, R. & Deitsch, K.W. Genetics of antigenic variation in Plasmodium falciparum. Curr. Genet. 55, 103–110 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pasternak, N.D. & Dzikowski, R. PfEMP1: an antigen that plays a key role in the pathogenicity and immune evasion of the malaria parasite Plasmodium falciparum. Int. J. Biochem. Cell Biol. 41, 1463–1466 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Chen, D.S. et al. A molecular epidemiological study of var gene diversity to characterize the reservoir of Plasmodium falciparum in humans in Africa. PLoS ONE 6, e16629 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gupta, S., Snow, R.W., Donnelly, C.A., Marsh, K. & Newbold, C. Immunity to non-cerebral severe malaria is acquired after one or two infections. Nat. Med. 5, 340–343 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Okell, L.C., Ghani, A.C., Lyons, E. & Drakeley, C.J. Submicroscopic infection in Plasmodium falciparum–endemic populations: a systematic review and meta-analysis. J. Infect. Dis. 200, 1509–1517 (2009).

    Article  PubMed  Google Scholar 

  47. Riley, E.M., Wahl, S., Perkins, D.J. & Schofield, L. Regulating immunity to malaria. Parasite Immunol. 28, 35–49 (2006).

    Article  CAS  PubMed  Google Scholar 

  48. Finney, O.C., Riley, E.M. & Walther, M. Regulatory T cells in malaria—friend or foe? Trends Immunol. 31, 63–70 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Hansen, D.S. & Schofield, L. Natural regulatory T cells in malaria: host or parasite allies? PLoS Pathog. 6, e1000771 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sidjanski, S. & Vanderberg, J.P. Delayed migration of Plasmodium sporozoites from the mosquito bite site to the blood. Am. J. Trop. Med. Hyg. 57, 426–429 (1997).

    Article  CAS  PubMed  Google Scholar 

  51. Gilson, P.R. & Crabb, B.S. Morphology and kinetics of the three distinct phases of red blood cell invasion by Plasmodium falciparum merozoites. Int. J. Parasitol. 39, 91–96 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Niederwieser, I., Felger, I. & Beck, H.P. Limited polymorphism in Plasmodium falciparum sexual-stage antigens. Am. J. Trop. Med. Hyg. 64, 9–11 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Liehl, P. & Mota, M.M. Innate recognition of malarial parasites by mammalian hosts. Int. J. Parasitol. 42, 557–566 (2012).

    Article  CAS  PubMed  Google Scholar 

  54. Vanderberg, J.P., Khan, Z.M. & Stewart, M.J. Induction of hepatic inflammatory response by Plasmodium berghei sporozoites protects BALB/c mice against challenge with Plasmodium yoelii sporozoites. J. Parasitol. 79, 763–767 (1993).

    Article  CAS  PubMed  Google Scholar 

  55. Khan, Z.M. & Vanderberg, J.P. Specific inflammatory cell infiltration of hepatic schizonts in BALB/c mice immunized with attenuated Plasmodium yoelii sporozoites. Int. Immunol. 4, 711–718 (1992).

    Article  CAS  PubMed  Google Scholar 

  56. Frevert, U. et al. Malaria circumsporozoite protein inhibits protein synthesis in mammalian cells. EMBO J. 17, 3816–3826 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hügel, F.U., Pradel, G. & Frevert, U. Release of malaria circumsporozoite protein into the host cell cytoplasm and interaction with ribosomes. Mol. Biochem. Parasitol. 81, 151–170 (1996).

    Article  PubMed  Google Scholar 

  58. Bojang, K.A. et al. Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial. Lancet 358, 1927–1934 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Polhemus, M.E. et al. Evaluation of RTS,S/AS02A and RTS,S/AS01B in adults in a high malaria transmission area. PLoS ONE 4, e6465 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Crispe, I.N. et al. Cellular and molecular mechanisms of liver tolerance. Immunol. Rev. 213, 101–118 (2006).

    Article  PubMed  Google Scholar 

  61. Dondorp, A.M. et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med. 2, e204 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cunnington, A.J., de Souza, J.B., Walther, M. & Riley, E.M. Malaria impairs resistance to Salmonella through heme- and heme oxygenase-dependent dysfunctional granulocyte mobilization. Nat. Med. 18, 120–127 (2012).

    Article  CAS  Google Scholar 

  63. Moormann, A.M., Snider, C.J. & Chelimo, K. The company malaria keeps: how co-infection with Epstein-Barr virus leads to endemic Burkitt lymphoma. Curr. Opin. Infect. Dis. 24, 435–441 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schwartz, L., Brown, G.V., Genton, B. & Moorthy, V.S. A review of malaria vaccine clinical projects based on the WHO rainbow table. Malar. J. 11, 11 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  65. The malERA Consultative Group on Vaccines. A research agenda for malaria eradication: vaccines. PLoS Med. 8, e1000398 (2011).

  66. Doolan, D.L. Plasmodium immunomics. Int. J. Parasitol. 41, 3–20 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Plowe, C.V., Alonso, P. & Hoffman, S.L. The potential role of vaccines in the elimination of falciparum malaria and the eventual eradication of malaria. J. Infect. Dis. 200, 1646–1649 (2009).

    Article  PubMed  Google Scholar 

  68. Matuschewski, K., Hafalla, J.C., Borrmann, S. & Friesen, J. Arrested Plasmodium liver stages as experimental anti-malaria vaccines. Hum. Vaccin. (suppl. 7), 16–21 (2011).

  69. Cockburn, I.A. & Zavala, F. T cell memory in malaria. Curr. Opin. Immunol. 19, 424–429 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Chakravarty, S. et al. CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. Nat. Med. 13, 1035–1041 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Cockburn, I.A. et al. Dendritic cells and hepatocytes use distinct pathways to process protective antigen from Plasmodium in vivo. PLoS Pathog. 7, e1001318 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Matuschewski, K., Hafalla, J.C., Borrmann, S. & Friesen, J. Arrested Plasmodium liver stages as experimental anti-malaria vaccines. Hum. Vaccin. (suppl. 7), 16–21 (2011).

  73. Weiss, W.R. & Jiang, C.G. Protective CD8+ T lymphocytes in primates immunized with malaria sporozoites. PLoS ONE 7, e31247 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lindner, S.E., Miller, J.L. & Kappe, S.H. Malaria parasite pre-erythrocytic infection: preparation meets opportunity. Cell. Microbiol. 14, 316–324 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hoffman, S.L. et al. Development of a metabolically active, non-replicating sporozoite vaccine to prevent Plasmodium falciparum malaria. Hum. Vaccin. 6, 97–106 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Vaughan, A.M., Wang, R. & Kappe, S.H. Genetically engineered, attenuated whole-cell vaccine approaches for malaria. Hum. Vaccin. 6, 107–113 (2010).

    Article  CAS  PubMed  Google Scholar 

  77. Epstein, J.E. et al. Live attenuated malaria vaccine designed to protect through hepatic CD8 T cell immunity. Science 334, 475–480 (2011).

    Article  CAS  PubMed  Google Scholar 

  78. Lee, S.W. et al. Attenuated vaccines can recombine to form virulent field viruses. Science 337, 188 (2012).

    Article  CAS  PubMed  Google Scholar 

  79. Genton, B. et al. A recombinant blood-stage malaria vaccine reduces Plasmodium falciparum density and exerts selective pressure on parasite populations in a phase 1–2b trial in Papua New Guinea. J. Infect. Dis. 185, 820–827 (2002).

    Article  PubMed  Google Scholar 

  80. Thera, M.A. et al. A field trial to assess a blood-stage malaria vaccine. N. Engl. J. Med. 365, 1004–1013 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Engwerda, C.R., Beattie, L. & Amante, F.H. The importance of the spleen in malaria. Trends Parasitol. 21, 75–80 (2005).

    Article  PubMed  Google Scholar 

  82. Douglas, A.D. et al. The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat. Commun. 2, 601 (2011).

    Article  CAS  PubMed  Google Scholar 

  83. Crosnier, C. et al. Basigin is a receptor essential for erythrocyte invasion by Plasmodium falciparum. Nature 480, 534–537 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tham, W.H., Healer, J. & Cowman, A.F. Erythrocyte and reticulocyte binding-like proteins of Plasmodium falciparum. Trends Parasitol. 28, 23–30 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Cohen, S., Mc, G.I. & Carrington, S. γ-globulin and acquired immunity to human malaria. Nature 192, 733–737 (1961).

    Article  CAS  PubMed  Google Scholar 

  86. Sabchareon, A. et al. Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am. J. Trop. Med. Hyg. 45, 297–308 (1991).

    Article  CAS  PubMed  Google Scholar 

  87. Fowkes, F.J., Richards, J.S., Simpson, J.A. & Beeson, J.G. The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: a systematic review and meta-analysis. PLoS Med. 7, e1000218 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Riley, E.M., Jepsen, S., Andersson, G., Otoo, L.N. & Greenwood, B.M. Cell-mediated immune responses to Plasmodium falciparum antigens in adult Gambians. Clin. Exp. Immunol. 71, 377–382 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Troye-Blomberg, M. et al. Production by activated human T cells of interleukin 4 but not interferon-γ is associated with elevated levels of serum antibodies to activating malaria antigens. Proc. Natl. Acad. Sci. USA 87, 5484–5488 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Teirlinck, A.C. et al. Longevity and composition of cellular immune responses following experimental Plasmodium falciparum malaria infection in humans. PLoS Pathog. 7, e1002389 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huaman, M.C. et al. Ex vivo cytokine and memory T cell responses to the 42-kDa fragment of Plasmodium falciparum merozoite surface protein-1 in vaccinated volunteers. J. Immunol. 180, 1451–1461 (2008).

    Article  CAS  PubMed  Google Scholar 

  92. Stevenson, M.M. & Riley, E.M. Innate immunity to malaria. Nat. Rev. Immunol. 4, 169–180 (2004).

    Article  CAS  PubMed  Google Scholar 

  93. Langhorne, J., Ndungu, F.M., Sponaas, A.M. & Marsh, K. Immunity to malaria: more questions than answers. Nat. Immunol. 9, 725–732 (2008).

    Article  CAS  PubMed  Google Scholar 

  94. Pombo, D.J. et al. Immunity to malaria after administration of ultra-low doses of red cells infected with Plasmodium falciparum. Lancet 360, 610–617 (2002).

    Article  PubMed  Google Scholar 

  95. Roestenberg, M. et al. Protection against a malaria challenge by sporozoite inoculation. N. Engl. J. Med. 361, 468–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Roestenberg, M. et al. Long-term protection against malaria after experimental sporozoite inoculation: an open-label follow-up study. Lancet 377, 1770–1776 (2011).

    Article  CAS  PubMed  Google Scholar 

  97. Butler, N.S. et al. Superior antimalarial immunity after vaccination with late liver stage-arresting genetically attenuated parasites. Cell Host Microbe 9, 451–462 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Friesen, J. et al. Natural immunization against malaria: causal prophylaxis with antibiotics. Sci. Transl. Med. 2, 40ra49 (2010).

    Article  CAS  PubMed  Google Scholar 

  99. Hviid, L. The role of Plasmodium falciparum variant surface antigens in protective immunity and vaccine development. Hum. Vaccin. 6, 84–89 (2010).

    Article  CAS  PubMed  Google Scholar 

  100. Janes, J.H. et al. Investigating the host binding signature on the Plasmodium falciparum PfEMP1 protein family. PLoS Pathog. 7, e1002032 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Saul, A. Mosquito stage, transmission blocking vaccines for malaria. Curr. Opin. Infect. Dis. 20, 476–481 (2007).

    Article  PubMed  Google Scholar 

  102. van der Kolk, M. et al. Evaluation of the standard membrane feeding assay (SMFA) for the determination of malaria transmission-reducing activity using empirical data. Parasitology 130, 13–22 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Todryk, S.M. et al. Multiple functions of human T cells generated by experimental malaria challenge. Eur. J. Immunol. 39, 3042–3051 (2009).

    Article  CAS  PubMed  Google Scholar 

  104. Reyes-Sandoval, A. et al. CD8+ T effector memory cells protect against liver-stage malaria. J. Immunol. 187, 1347–1357 (2011).

    Article  CAS  PubMed  Google Scholar 

  105. Tamminga, C. et al. Adenovirus-5–vectored P. falciparum vaccine expressing CSP and AMA1. Part B: safety, immunogenicity and protective efficacy of the CSP component. PLoS ONE 6, e25868 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Forbes, E.K. et al. Combining liver- and blood-stage malaria viral-vectored vaccines: investigating mechanisms of CD8+ T cell interference. J. Immunol. 187, 3738–3750 (2011).

    Article  CAS  PubMed  Google Scholar 

  107. Reyes-Sandoval, A. et al. Prime-boost immunization with adenoviral and modified vaccinia virus Ankara vectors enhances the durability and polyfunctionality of protective malaria CD8+ T-cell responses. Infect. Immun. 78, 145–153 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Stewart, V.A. et al. Priming with an adenovirus 35-circumsporozoite protein (CS) vaccine followed by RTS,S/AS01B boosting significantly improves immunogenicity to Plasmodium falciparum CS compared to that with either malaria vaccine alone. Infect. Immun. 75, 2283–2290 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Vuola, J.M. et al. Differential immunogenicity of various heterologous prime-boost vaccine regimens using DNA and viral vectors in healthy volunteers. J. Immunol. 174, 449–455 (2005).

    Article  CAS  PubMed  Google Scholar 

  110. Bejon, P. et al. Immunogenicity of the candidate malaria vaccines FP9 and modified vaccinia virus Ankara encoding the pre-erythrocytic antigen ME-TRAP in 1–6 year old children in a malaria endemic area. Vaccine 24, 4709–4715 (2006).

    Article  CAS  PubMed  Google Scholar 

  111. Nie, C.Q. et al. IP-10–mediated T cell homing promotes cerebral inflammation over splenic immunity to malaria infection. PLoS Pathog. 5, e1000369 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Van den Steen, P.E. et al. CXCR3 determines strain susceptibility to murine cerebral malaria by mediating T lymphocyte migration toward IFN-γ–induced chemokines. Eur. J. Immunol. 38, 1082–1095 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Berthoud, T.K., Dunachie, S.J., Todryk, S., Hill, A.V. & Fletcher, H.A. MIG (CXCL9) is a more sensitive measure than IFN-γ of vaccine induced T-cell responses in volunteers receiving investigated malaria vaccines. J. Immunol. Methods 340, 33–41 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Querec, T.D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat. Immunol. 10, 116–125 (2009).

    Article  CAS  PubMed  Google Scholar 

  115. Nakaya, H.I. et al. Systems biology of vaccination for seasonal influenza in humans. Nat. Immunol. 12, 786–795 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Andersen-Nissen, E., Heit, A. & McElrath, M.J. Profiling immunity to HIV vaccines with systems biology. Curr. Opin. HIV AIDS 7, 32–37 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Luke, T.C. & Hoffman, S.L. Rationale and plans for developing a non-replicating, metabolically active, radiation-attenuated Plasmodium falciparum sporozoite vaccine. J. Exp. Biol. 206, 3803–3808 (2003).

    Article  PubMed  Google Scholar 

  118. Uthaipibull, C. et al. Inhibitory and blocking monoclonal antibody epitopes on merozoite surface protein 1 of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 307, 1381–1394 (2001).

    Article  CAS  PubMed  Google Scholar 

  119. Nwuba, R.I. et al. The human immune response to Plasmodium falciparum includes both antibodies that inhibit merozoite surface protein 1 secondary processing and blocking antibodies. Infect. Immun. 70, 5328–5331 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Voss, T.S. et al. A var gene promoter controls allelic exclusion of virulence genes in Plasmodium falciparum malaria. Nature 439, 1004–1008 (2006).

    Article  CAS  PubMed  Google Scholar 

  121. O'Donnell, R.A., Saul, A., Cowman, A.F. & Crabb, B.S. Functional conservation of the malaria vaccine antigen MSP-119 across distantly related Plasmodium species. Nat. Med. 6, 91–95 (2000).

    Article  CAS  PubMed  Google Scholar 

  122. Doolan, D.L., Dobano, C. & Baird, J.K. Acquired immunity to malaria. Clin. Microbiol. Rev. 22, 13–36 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Weiss, G.E. et al. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J. Immunol. 183, 2176–2182 (2009).

    Article  CAS  PubMed  Google Scholar 

  124. Bodescot, M. et al. Transcription status of vaccine candidate genes of Plasmodium falciparum during the hepatic phase of its life cycle. Parasitol. Res. 92, 449–452 (2004).

    Article  PubMed  Google Scholar 

  125. Epstein, J.E. et al. Safety and clinical outcome of experimental challenge of human volunteers with Plasmodium falciparum–infected mosquitoes: an update. J. Infect. Dis. 196, 145–154 (2007).

    Article  PubMed  Google Scholar 

  126. Bousema, T. et al. Revisiting the circulation time of Plasmodium falciparum gametocytes: molecular detection methods to estimate the duration of gametocyte carriage and the effect of gametocytocidal drugs. Malar. J. 9, 136 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Bousema, T. et al. The dynamics of naturally acquired immune responses to Plasmodium falciparum sexual stage antigens Pfs230 & Pfs48/45 in a low endemic area in Tanzania. PLoS ONE 5, e14114 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Bojang, K.A. RTS,S/AS02A for malaria. Expert Rev. Vaccines 5, 611–615 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Nussenzweig, V. & Nussenzweig, R.S. Rationale for the development of an engineered sporozoite malaria vaccine. Adv. Immunol. 45, 283–334 (1989).

    Article  CAS  PubMed  Google Scholar 

  130. Heppner, D.G. & Ballou, W.R. Malaria in 1998: advances in diagnosis, drugs and vaccine development. Curr. Opin. Infect. Dis. 11, 519–530 (1998).

    Article  CAS  PubMed  Google Scholar 

  131. Ballou, W.R. The development of the RTS,S malaria vaccine candidate: challenges and lessons. Parasite Immunol. 31, 492–500 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the mentors, colleagues, students, funders and volunteers whose support, hard work, ideas and discussions have contributed to our thinking over many years. The material in this article does not reflect the endorsement, official attitude or position of the London School of Hygiene and Tropical Medicine, the Uniformed Services University of the Health Sciences or the US Department of Defense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleanor M Riley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riley, E., Stewart, V. Immune mechanisms in malaria: new insights in vaccine development. Nat Med 19, 168–178 (2013). https://doi.org/10.1038/nm.3083

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm.3083

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology