Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3

Abstract

The fusion glycoproteins of human respiratory syncytial virus (RSV) and human parainfluenza virus type-3 (PIV-3) mediate virus entry and syncytium formation. Interaction between the fusion protein of RSV and RhoA, a small GTPase, facilitates virus-induced syncytium formation. We show here a RhoA-derived peptide inhibits RSV and syncytium formation induced by RSV and PIV-3, both in vitro by inhibition of cell-to-cell fusion and in vivo by reduction of peak titer by 2 log10 in RSV-infected mice. These findings indicate that the interaction between these two paramyxovirus fusion proteins and RhoA is an important target for new antiviral strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RhoA-derived peptide inhibits RSV infection and syncytium formation.
Figure 2: Effect of RhoA77-95 added after rgRSV infection.
Figure 3: Effect of RhoA-derived peptides on cell-to-cell fusion.
Figure 4: RhoA77-95 peptide competitively inhibits RhoA interaction with RSV F in an ELISA.
Figure 5: RhoA77-95 peptide treatment reduces illness and viral titers in RSV-infected mice.
Figure 6: Inhibition of PIV-3 infection by RhoA77-95 peptide.

Similar content being viewed by others

References

  1. Collins, P.L., McIntosh, K. & Chanock, R.M. in Fields Virology 3rd edn. (eds. Fields, B.N. et al.) 1313–1351 (Lippincott-Raven, Philadelphia, 1996).

    Google Scholar 

  2. Welliver, R., Wong, D.T., Choi, T.S. & Ogra, P.L. Natural history of parainfluenza virus infection in childhood. J. Pediatr. 101, 180–187 (1982).

    Article  CAS  Google Scholar 

  3. Levine, S., Klaiber-Franco, R. & Paradiso, P.R. Demonstration that glycoprotein G is the attachment protein of respiratory syncytial virus. J. Gen. Virol. 68, 2521–2524 (1987).

    Article  CAS  Google Scholar 

  4. Scheid, A., Caliguiri, L.A., Compans, R.W. & Choppin, P.W. Isolation of paramyxovirus glycoproteins. Association of both hemagglutinating and neuraminidase activities with the larger SV5 glycoprotein. Virology 50, 640–652 ( 1972).

    Article  CAS  Google Scholar 

  5. Krusat, T. & Streckert, H.J. Heparin-dependent attachment of respiratory syncytial virus (RSV) to host cells. Arch. Virol. 142, 1247–1254 ( 1997).

    Article  CAS  Google Scholar 

  6. Feldman, S.A., Hendry, R.M. & Beeler, J.A. Identification of a linear heparin binding domain for human respiratory syncytial virus attachment glycoprotein G. J. Virol. 73, 6610–6617 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Collins, P.L. & Mottet, G. Post-translational processing and oligomerization of the fusion glycoprotein of human respiratory syncytial virus. J. Gen. Virol. 72, 3095– 3101 (1991).

    Article  CAS  Google Scholar 

  8. Russell, R., Paterson, R.G. & Lamb, R.A. Studies with cross-linking reagents on the oligomeric form of the paramyxovirus fusion protein. Virology 199, 160–168 (1994).

    Article  CAS  Google Scholar 

  9. Karron, R.A. et al. Respiratory syncytial virus (RSV) SH and G proteins are not essential for viral replication in vitro: clinical evaluation and molecular characterization of a cold-passaged, attenuated RSV subgroup B mutant. Proc. Natl. Acad. Sci. USA 94, 13961– 13966 (1997).

    Article  CAS  Google Scholar 

  10. Chambers, P., Pringle, C.R. & Easton, A.J. Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. J. Gen. Virol. 71, 3075–3080 ( 1990).

    Article  CAS  Google Scholar 

  11. Hernandez, L.D., Hoffman, L.R., Wolfsberg, T.G. & White, J.M. Virus-cell and cell-cell fusion. Annu. Rev. Cell Dev. Biol. 12, 627–661 (1996).

    Article  CAS  Google Scholar 

  12. Sylwester, A. et al. HIV-induced syncytia of a T cell line form single giant pseudopods and are motile. J. Cell Sci. 106, 941– 953 (1993).

    PubMed  Google Scholar 

  13. Yang, C. & Compans, R.W. Analysis of the murine leukemia virus R peptide: delineation of the molecular determinants which are important for its fusion inhibition activity. J. Virol. 71, 8490–8496 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pastey, M.K., Crowe, J.E. & Graham, B.S. RhoA interacts with the fusion glycoprotein of respiratory syncytial virus and facilitates virus-induced syncytium formation. J. Virol. 73, 7262–7270 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Narumiya, S. The small GTPase Rho: cellular functions and signal transduction. J. Biochem . J. Biol. Chem. 120, 215– 228 (1996).

    CAS  Google Scholar 

  16. Pastey, M.K. & Samal, S.K. Analysis of bovine respiratory syncytial virus envelope glycoproteins in cell fusion. J. Gen. Virol. 78, 1885–1889 (1997).

    Article  CAS  Google Scholar 

  17. Heminway, B.R. et al. Analysis of respiratory syncytial virus F, G, and SH proteins in cell fusion. Virology 200, 801– 805 (1994).

    Article  CAS  Google Scholar 

  18. Graham, B.S., Perkins, M.D., Wright, P.F. & Karzon, D.T. Primary respiratory syncytial virus infection in mice. J. Med. Virol. 26, 153–162 ( 1988).

    Article  CAS  Google Scholar 

  19. Dutch, R.E., Joshi, S.B. & Lamb, R.A. Membrane fusion promoted by increasing surface densities of the paramyxovirus F and HN proteins: comparison of fusion reactions mediated by simian virus 5 F, human parainfluenza virus type 3 F, and influenza virus HA. J. Virol. 72, 7745– 7753 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Aroeti, B. & Henis, Y.I. Effects of fusion temperature on the lateral mobility of Sendai virus glycoproteins in erythrocyte membranes and on cell fusion indicate that glycoprotein mobilization is required for cell fusion. Biochemistry 27, 5654– 5661 (1988).

    Article  CAS  Google Scholar 

  21. Daya, M., Cervin, M. & Anderson, R. Cholesterol enhances mouse hepatitis virus-mediated cell fusion. Virology 163, 276– 283 (1988).

    Article  CAS  Google Scholar 

  22. Rapaport, D., Ovadia, M. & Shai, Y. A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus-cell fusion: an emerging similarity with functional domains of other viruses. EMBO J. 14, 5524–5531 (1995).

    Article  CAS  Google Scholar 

  23. Wild, C.T., Shugars, D.C., Greenwell, T.K., McDanal, C.B. & Matthews, T.J. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc. Natl. Acad. Sci. USA 91, 9770–9774 (1994).

    Article  CAS  Google Scholar 

  24. Lambert, D.M. et al. Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Proc. Natl. Acad. Sci. USA 93, 2186–2191 ( 1996).

    Article  CAS  Google Scholar 

  25. Yao, Q. & Compans, R.W. Peptides corresponding to the heptad repeat sequence of human parainfluenza virus fusion protein are potent inhibitors of virus infection. Virology 223, 103–112 (1996).

    Article  CAS  Google Scholar 

  26. Kilby, J.M. et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry Nature Med. 4, 1302–1307 (1998).

    Article  CAS  Google Scholar 

  27. Murphy, B.R. et al. Immunization of cotton rats with the fusion (F) and large (G) glycoproteins of respiratory syncytial virus (RSV) protects against RSV challenge without potentiating RSV disease. Vaccine 7, 533–540 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Rauf Kuli-Zade assisted with the animal experiments. M. Denison, V. Varthakavi and P. Wright did neutralization assays on coronavirus, herpes simplex virus type I and influenza virus, respectively. J. Exton, S. Aung and T. Johnson contributed through editorial comments and discussions. Fluorescent microscopy analyses were done in part through use of the Vanderbilt University Medical Center Cell Imaging Resource (supported by CA68485 and DK20593). This work was supported by National Institutes of Health grant RO1-AI-33933.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barney S. Graham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastey, M., Gower, T., Spearman, P. et al. A RhoA-derived peptide inhibits syncytium formation induced by respiratory syncytial virus and parainfluenza virus type 3. Nat Med 6, 35–40 (2000). https://doi.org/10.1038/71503

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/71503

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing