Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vaccine developments

Margaret A. Liu (Vice President, Vaccines Research, Chiron Corporation) reviews a wide range of approaches to vaccine design and development. Consideration is given to the particular strengths and weaknesses of protocols ranging from traditional attenuated organisms to the most innovative transgenic plants and DMA-based vaccines, and how well each is likely to meet our future vaccine needs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. Levine, M.M., Woodrow, G.C., Kaper, J.B. & Cobon, G.S. New generation vaccines. Second edn (Marcel Dekker, Inc., New York, 1997).

    Google Scholar 

  2. Fenner, F., Henderson, D.A., Arita, L., Jezek, Z. & Ladnyi, I.D. Smallpox and its eradication (World Health Organization, Geneva, 1988).

    Google Scholar 

  3. Jenner, E. An inquiry into the causes and effects of the variolae vaccinae, a disease discovered in some of the western counties of England, particularly Gloucestershire, and known by the name of the cow pox. London, 1798, in Classics of Medicine and Surgery (ed. Camac, C.N.B.) 213–40 (Dover, New York, 1959).

    Google Scholar 

  4. Pasture, L., Chamberland, C.-E. & Roux, E. Sur la vaccination charbonneuse. CR Acad Sci,Paris 92, 1378–1383 (1881).

    Google Scholar 

  5. Pasteur, L. Une statistique au sujet de la vaccination préventive contre le charbon, portant sur quatre-vingt-cinq-mille animaux. CR Acad Sci, Paris 95, 1250–1252 (1882).

    Google Scholar 

  6. Calmette, A. La vaccination preventive contre la tuberculose par le BCG (Masson, Paris, 1927).

  7. Maassab, H.F. & DeBorde, D.C. Development and characterization of cold-adapted viruses for use as live virus vaccines. Vaccine 3, 355–371 (1985).

    Article  CAS  Google Scholar 

  8. Daniel, M.D., Kirchhoff, F., Czajak, S.C., Sehgal, P.K. & Desrosiers, R.C. Protective effects of a live attenuated SIV vaccine with a deletion in the nef gene. Science 258, 1938–1941 (1992).

    Article  CAS  Google Scholar 

  9. Almond, N. . et al. Protection by attenuated simian immunodeficiency virus in macaques against challenge with virus-infected cells. Lancet 345, 1342–1344 (1995).

    Article  CAS  Google Scholar 

  10. Lohman, B.L. et al. A partially attenuated simia duces host immunity that correlates with resist n immunodeficiency virus in-nce to pathogenic virus challenge. J. Virol. 68, 7021–7091 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ruprecht, R.M. et al. “Attenuated” simian immunodeficiency virus in macaque neonates. AIDS Res. Hum Retroviruses 12, 459–460 (1996).

    Article  CAS  Google Scholar 

  12. Baba, T.W. et al. Pathogenicity of live, attenuated SIV after mucosal infection of neonatal macaques. Science 267, 1820–1825 (1995).

    Article  CAS  Google Scholar 

  13. Treanor, J.J. et al. Evaluation of the protective efficacy of a serotype 1 bovine-human rotavirus reassortant vaccine in infants. Pediatr. Infect. Dis. J. 14, 301–307 (1995).

    Article  CAS  Google Scholar 

  14. Rennels, M.B. et al. Safety and efficacy of high-dose rhesus-human reassortant rotavirus vaccines—report of the National Multicenter Trial. United States Rotavirus Vaccine Efficacy Croup. Pediatrics 97, 7–13 (1996).

    CAS  Google Scholar 

  15. Smith, G.L. & Moss, B. Infectious poxvirus vectors have capacity for at least 25,000 base pairs of foreign DNA. Gene 25, 21–28 (1983).

    Article  CAS  Google Scholar 

  16. Jones, L., Ristow, S., Yilma, T. & Moss, B. Accidental human vaccination with vaccinia virus expressing nucleoprotein gene [letter]. Nature 319, 543 (1986).

    Article  CAS  Google Scholar 

  17. Cooney, E.L. et al. Safety of and immunological response to a recombinant vaccinia virus vaccine expressing HIV envelope glycoprotein. Lancet 337, 567–572 (1991).

    Article  CAS  Google Scholar 

  18. Rooney, J.F., Wohlenberg, C., Cremer, K.J., Moss, B. & Notkins, A.L. Immunization with a vaccinia virus recombinant expressing herpes simplex virus type 1 glycoprotein D: long-term protection and effect of revaccination. J. Virol. 62, 1530–1534 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kundig, T.M., Kalberer, C.P., Hengartner, H. & Zinkernagel, R.M. Vaccination with two different vaccinia recombinant viruses: long-term inhibition of secondary vaccination. Vaccine 11, 1154–1158 (1993).

    Article  CAS  Google Scholar 

  20. Hanke, T. et al. Enhancement of MHC class l-restricted peptide-specific T cell induction by a DNA prime/MVA boost vaccination regime. Vaccine 16, 439 (1998).

    Article  CAS  Google Scholar 

  21. Fries, L.F. et al. Human safety and immunogenicity of a canarypox-rabies glycoprotein recombinant vaccine: an alternative poxvirus vector system. Vaccine 14, 428–434 (1996).

    Article  CAS  Google Scholar 

  22. Frolov, I. et al. Alphavirus-based expression vectors: Strategies and applications. Proc. Natl. Acad. Sci. USA 93, 11371–11377 (1996).

    Article  CAS  Google Scholar 

  23. Xiong, C. et al. Sindbis virus: an efficient, broad host range vector for gene expression in animal cells. Science 243, 1188–1191 (1989).

    Article  CAS  Google Scholar 

  24. Davis, N.L., Brown, K.W. & Johnston, R.E. A viral vaccine vector that expresses foreign genes in lymph nodes and protects against mucosal challenge. J. Virol. 70, 3781–3787 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Caley, I.J. et al. Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J. Virol. 71, 3031–3038 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sizemore, D.R., Branstrom, A.A. & Sadoff, J.C. Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science 270, 299–302 (1995).

    Article  CAS  Google Scholar 

  27. Darji, A. et al. Oral somatic transgene vaccination using attenuated S. typhimurium. Cell. 91, 765–775 (1997).

    Article  CAS  Google Scholar 

  28. Goossens, P.L., Milon, G., Cossart, P. & Saron, M.F. Attenuated Listeria mono-cytogenes as a live vector for induction of CD8+ T cells in vivo: a study with the nucleoprotein of the lymphocytic choriomeningitis virus. Int. Immunol. 7, 797–805 (1995).

    Article  CAS  Google Scholar 

  29. Dietrich, G. et al. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nature Biotechnol. 16, 181–185 (1998).

    Article  CAS  Google Scholar 

  30. Hoth, D.F., Bolognesi, D.P., Corey, L. & Vermund, S.H. HIV vaccine development: a progress report. Ann Intern. Med. 8, 603–611 (1994).

    Article  Google Scholar 

  31. Clements-Mann, M.L. et al. HIV-1 immune responses induced by canarypox (ALVAC) gp-160 MN, SF2 rgpi 20, or both vaccines in seronegative adults. J. of Infect. Dis. (In press).

  32. Graham, B.S. & Wright, P.F. Candidate AIDS vaccines. N. Engl. J. Med. 333, 1331–1339 (1995).

    Article  CAS  Google Scholar 

  33. Murphy, T.V. et al. Declining incidence of Haemophilus influenzae type b disease since introduction of vaccination. JAMA 269, 246–248 (1993).

    Article  CAS  Google Scholar 

  34. Hofmann, J. et al. The prevalence of drug-resistant Streptococcus pneumoniae in Atlanta. N. Engl. J. Med. 333, 481–486 (1995).

    Article  CAS  Google Scholar 

  35. Flarend, R.E. et al. In vivo absorption of aluminium-containing vaccine adjuvants using 26AI. Vaccine 15, 1314–1318 (1997).

    Article  CAS  Google Scholar 

  36. Gupta, R.K. & Siber, G.R. Adjuvants for human vaccines—current status, problems and future prospects. Vaccine 13, 1263–1276 (1995).

    Article  CAS  Google Scholar 

  37. Cox, J.C. & Coulter, A.R. Adjuvants—a classification and review of their modes of action. Vaccine 15, 248–256 (1997)

    Article  CAS  Google Scholar 

  38. Gupta, R.K., Chang, A.C., Griffin, P., Rivera, R. & Siber, G.R. In vivo distribution of radioactivity in mice after injection of biodegradable polymer microspheres containing 14C-labeled tetanus toxoid. Vaccine 14, 1412–1416 (1996).

    Article  CAS  Google Scholar 

  39. Anderson, J.M. & Shive, M.S. Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews 28, 5–24 (1997).

    Article  CAS  Google Scholar 

  40. Tamura, S. et al. Synergistic action of cholera toxin B subunit (and Escherichia coli heat-labile toxin B subunit) and a trace amount of cholera whole toxin as an adjuvant for nasal influenza vaccine. Vaccine 12, 419–426 (1994).

    Article  CAS  Google Scholar 

  41. Glenn, G.M., Rao, M., Matyas, G.R. & Alving, C.R. Skin immunization made possible by cholera toxin. Nature 391, 851 (1998).

    Article  CAS  Google Scholar 

  42. Robbins, J.B., Schneerson, R. & Szu, S.C. Hypothesis: how licensed vaccines confer protective immunity. Adv. Exp. Med. Biol. 397, 169–182 (1996).

    Article  CAS  Google Scholar 

  43. Haq, T.A., Mason, H.S., Clements, J.D. & Arntzen, C.J. Oral immunization with a recombinant bacterial antigen produced in transgenic plants. Science 268, 714–716 (1995).

    Article  CAS  Google Scholar 

  44. Mason, H.S. et al. Expression of Norwalk virus capsid protein in transgenic tobacco and potato and its oral immunogenicity in mice. Proc. Natl. Acad. Sci. USA 93, 5335–5340 (1996).

    Article  CAS  Google Scholar 

  45. Arakawa, T., Chong, D.K.X. & Langridge, W.H.R. Efficacy of a food plant-based oral cholera toxin B subunit vaccine. Nature Biotechnol. 16, 292–298 (1998).

    Article  CAS  Google Scholar 

  46. Donnelly, J.J., Ulmer, J.B., Shiver, J.W. & Liu, M.A. DNA vaccines. Annu. Rev. Immunol. 15, 617–648 (1997).

    Article  CAS  Google Scholar 

  47. Martinon, F. et al. Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. Eur. J. Immunol. 23, 1719–1722 (1993).

    Article  CAS  Google Scholar 

  48. Ward, G., Reider, E. & Mason, P.W. Plasmid DNA encoding replicating foot and mouth disease virus genomes induces antiviral immune responses in swine, journal of Virology 71, 7442–7447 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hariharan, M.J. et al. DNA immunization against herpes simplex virus: enhanced efficacy using a sindbis virus-based vector. J. Virol. 72, 950–958 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Macatonia, S.E., Patterson, S. & Knight, S.C. Primary proliferative and cytotoxic T-cell responses to HIV induced in vitro by human dendritic cells. Immunology 74, 399–406 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Nestle, F.O. et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nature Med. 4, 328–332 (1998).

    Article  CAS  Google Scholar 

  52. Fleischmann, R.D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  CAS  Google Scholar 

  53. Orme, I.M. Prospects for new vaccines against tuberculosis. Trends In Microbiology 3, 401–404 (1995).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M. Vaccine developments. Nat Med 4 (Suppl 5), 515–519 (1998). https://doi.org/10.1038/nm0598supp-515

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nm0598supp-515

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing