Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immunopathogenesis and immunotherapy in AIDS virus infections

Abstract

The heterogeneity of HIV and the different human leukocyte antigen (HLA) backgrounds of infected individuals have posed challenges to understanding the pathogenesis of HIV infection. But continuing advances in our knowledge of the role of immune responses in controlling HIV viremia should help to define goals for immune-based therapies and vaccine strategies against AIDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of CTLs on viremia.

Katie Ris

Figure 2: Escape from neutralizing antibody responses.

Katie Ris

Figure 3: Emergence of a virus with a dominant CTL escape mutation that resulted in the clinical deterioration of an SHIV-infected monkey.

Katie Ris

Figure 4

Katie Ris

Similar content being viewed by others

References

  1. Friedman-Kien, A. et al. Kaposi's sarcoma and Pneumocystis pneumonia among homsexual men- New York City and California. MMWR 30, 305–308 (1981).

    Google Scholar 

  2. Barré-Sinoussi, F. et al. Isolation of a T-lymphotrophic retrovirus from a patient at risk for acquired immunodeficiency syndrome (AIDS). Science 220, 868–871 (1983).

    Article  PubMed  Google Scholar 

  3. Letvin, N.L. et al. Induction of AIDS-like disease in macaque monkeys with T-cell tropic retrovirus STLV-III. Science 230, 71–73 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Weiss, R.A. & Clapham, P.R. Neutralization of human T-lymphotropic virus type III by sera of AIDS and AIDS-risk patients. Nature 316, 69–72 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Plata, F. et al. AIDS virus-specific cytotoxic T lymphocytes in lung disorders. Nature 328, 348–351 (1987).

    Article  CAS  PubMed  Google Scholar 

  6. Walker, B.D. et al. HIV-specific cytotoxic T lymphocytes in seropositive individuals. Nature 328, 345–348 (1987).

    Article  CAS  PubMed  Google Scholar 

  7. Montefiori, D.C. et al. Neutralizing and infection-enhancing antibody responses to human immunodeficiency virus type 1 in long-term nonprogressors. J. Infect. Dis. 173, 60–67 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Moog, C., Fleury, H.J., Pellegrin, I., Kirn, A. & Aubertin, A.M. Autologous and heterologous neutralizing antibody responses following initial seroconversion in human immunodeficiency virus type 1-infected individuals. J. Virol. 71, 3734–3741 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Moore, J.P. et al. Primary isolates of human immunodeficiency virus type 1 are relatively resistant to neutralization by monoclonal antibodies to gp120, and their neutralization is not predicted by studies with monomeric gp120. J. Virol. 69, 101–109 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poignard, P. et al. Neutralizing antibodies have limited effects on the control of established HIV-1 infection in vivo. Immunity 10, 431–438 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Pilgrim, A.K. et al. Neutralizing antibody responses to human immunodeficiency virus type 1 in primary infection and long-term-nonprogressive infection. J. Infect. Dis. 176, 924–932 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Schmitz, J.E. et al. Effect of humoral immune responses on controlling viremia during primary infection of rhesus monkeys with simian immunodeficiency virus. J. Virol. 77, 2165–2173 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Choe, H. et al. The β-chemokines receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85, 1135–1148 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Javaherian, K. et al. Principal neutralizing domain of the human immunodeficiency virus type 1 envelope protein. Proc. Natl. Acad. Sci. USA 86, 6768–6772 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Reitter, J.N., Means, R.E. & Desrosiers, R.C. A role for carbohydrates in immune evasion in AIDS. Nat. Med. 4, 679–684 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Trkola, A. et al. Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J. Virol. 69, 6609–6617 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Richman, D.D., Wrin, T., Little, S.J. & Petropoulos, C.J. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci. USA 100, 4144–4149 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Jacobson, J.M. Passive immunization for the treatment of HIV infection. Mt. Sinai J. Med. 65, 22–26 (1998).

    CAS  PubMed  Google Scholar 

  20. Mascola, J.R. et al. Protection of macaques against vaginal transmission of a pathogenic HIV-1/SIV chimeric virus by passive infusion of neutralizing antibodies. Nat. Med. 6, 207–210 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Haigwood, N.L. et al. Passive immune globulin therapy in the SIV/macaque model: early intervention can alter disease profile. Immunol. Lett. 51, 107–114 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Baba, T.W. et al. Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian–human immunodeficiency virus infection. Nat. Med. 6, 200–206 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Walker, C.M., Moody, D.J., Stites, D.P. & Levy, J.A. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. Science 234, 1563–1566 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Tsubota, H., Lord, C.I., Watkins, D.I., Morimoto, C. & Letvin, N.L. A cytotoxic T lymphocyte inhibits acquired immunodeficiency syndrome virus replication in peripheral blood lymphocytes. J. Exp. Med. 169, 1421–1434 (1989).

    Article  CAS  PubMed  Google Scholar 

  25. Yang, O.O. et al. Suppression of human immunodeficiency virus type 1 replication by CD8+ cells: evidence for HLA class I-restricted triggering of cytolytic and noncytolytic mechanisms. J. Virol. 71, 3120–3128 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cocchi, F. et al. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270, 1811–1815 (1995).

    Article  CAS  PubMed  Google Scholar 

  27. Wagner, L. et al. Beta-chemokines are released from HIV-1-specific cytolytic T-cell granules complexed to proteoglycans. Nature 391, 908–911 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Zhang, L. et al. Contribution of human alpha-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science 298, 995–1000 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Koup, R.A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 4650–4655 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Borrow, P., Lewicki, H., Hahn, B.H., Shaw, G.M. & Oldstone, M.B.A. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 68, 6103–6110 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Borrow, P. et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat. Med. 3 (1997).

  32. Price, D.A. et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc. Natl. Acad. Sci. USA 94, 1890–1895 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pantaleo, G. et al. Major expansion of CD8+ T cells with a predominant V beta usage during the primary immune response to HIV. Nature 370, 463–467 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Yasutomi, Y., Reimann, K.A., Lord, C.I., Miller, M.D. & Letvin, N.L. Simian immunodeficiency virus-specific CD8+ lymphocyte response in acutely infected rhesus monkeys. J. Virol. 67, 1707–1711 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen, Z.W. et al. T cell receptor Vβ repertoire in an acute infection of rhesus monkeys with simian immunodeficiency viruses and a chimeric simian-human immunodeficiency virus. J. Exp. Med. 182, 21–31 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Kuroda, M.J. et al. Emergence of CTL coincides with clearance of virus during primary simian immunodeficiency virus infection in rhesus monkeys. J. Immunol. 162, 5127–5133 (1999).

    CAS  PubMed  Google Scholar 

  37. Ogg, G.S. et al. Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 279, 2103–2106 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Betts, M.R. et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4(+) and CD8(+) T-cell responses: relationship to viral load in untreated HIV infection. J. Virol. 75, 11983–11991 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Addo, M.M. et al. Comprehensive epitope analysis of human immunodeficiency virus type 1 (HIV-1)-specific T-cell responses directed against the entire expressed HIV-1 genome demonstrate broadly directed responses, but no correlation to viral load. J. Virol. 77, 2081–2092 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Altfeld, M. et al. Enhanced detection of HIV-1-specific T cell responses to highly variable regions using peptides based on autologous virus sequences. J. Virol. (in the press).

  41. Schmitz, J.E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Jin, X. et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 189, 991–998 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Seth, A. et al. Immunization with a modified vaccinia virus expressing simian immunodeficiency virus (SIV) Gag-Pol primes for an anamnestic Gag-specific cytotoxic T-lymphocyte response and is associated with reduction of viremia after SIV challenge. J. Virol. 74, 2502–2509 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Amara, R.R. et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science 292, 69–74 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Barouch, D.H. et al. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science 290, 486–492 (2000).

    Article  CAS  PubMed  Google Scholar 

  46. Shiver, J.W. et al. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415, 331–335 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Kaslow, R.A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nat. Med. 2, 405–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Migueles, S.A. et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl. Acad. Sci. USA 97, 2709–2714 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Gao, X. et al. Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N. Engl. J. Med. 344, 1668–1675 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Kaslow, R.A. et al. Polymorphisms in HLA class I genes associated with both favorable prognosis of human immunodeficiency virus (HIV) type 1 infection and positive cytotoxic T-lymphocyte responses to ALVAC-HIV recombinant canarypox vaccines. J. Virol. 75, 8681–8689 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pal, R. et al. ALVAC-SIV-gag-pol-env–based vaccination and macaque major histocompatibility complex class I (A*01) delay simian immunodeficiency virus SIVmac-induced immunodeficiency. J. Virol. 76, 292–302 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pitcher, C.J. et al. HIV-1-specific CD4+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nat. Med. 5, 518–525 (1999).

    Article  CAS  PubMed  Google Scholar 

  54. McNeil, A.C. et al. High-level HIV-1 viremia suppresses viral antigen-specific CD4(+) T cell proliferation. Proc. Natl. Acad. Sci. USA 98, 13878–13883 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chen, Z.W. et al. Prolonged dominance of clonally restricted CD4+ T cells in macaques infected with simian immunodeficiency viruses. J. Virol. 74, 7442–7450 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosenberg, E.S. et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science 278, 1447–1450 (1997).

    Article  CAS  PubMed  Google Scholar 

  57. McKay, P.F. et al. Global dysfunction of CD4 T-lymphocyte cytokine expression in simian-human immunodeficiency virus/SIV-infected monkeys is prevented by vaccination. J. Virol. 77, 4695–4702 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Reitz, M.S. Jr., Wilson, C., Naugle, C., Gallo, R.C. & Robert-Guroff, M. Generation of a neutralization-resistant variant of HIV-1 is due to selection for a point mutation in the envelope gene. Cell 54, 57–63 (1988).

    Article  CAS  PubMed  Google Scholar 

  59. Albert, J. et al. Rapid development of isolate-specific neutralizing antibodies after primary HIV-1 infection and consequent emergence of virus variants which resist neutralization by autologous sera. AIDS 4, 107–112 (1990).

    Article  CAS  PubMed  Google Scholar 

  60. Allen, T.M. et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407, 386–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  61. Phillips, R.E. et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354, 453–459 (1991).

    Article  CAS  PubMed  Google Scholar 

  62. Goulder, P.J. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med. 3, 212–217 (1997).

    Article  CAS  PubMed  Google Scholar 

  63. Goulder, P.J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Barouch, D.H. et al. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature 415, 335–339 (2002).

    Article  CAS  PubMed  Google Scholar 

  65. Brander, C. et al. Lack of strong immune selection pressure by the immunodominant, HLA-A*0201-restricted cytotoxic T lymphocyte response in chronic human immunodeficiency virus-1 infection. J. Clin. Invest. 101, 2559–2566 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Moore, C.B. et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296, 1439–1443 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Yusim, K. et al. Clustering patterns of cytotoxic T-lymphocyte epitopes in human immunodeficiency virus type 1 (HIV-1) proteins reveal imprints of immune evasion on HIV-1 global variation. J. Virol. 76, 8757–8768 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Trachtenberg, E. Advantage of rare HLA supertype in HIV disease progression. Nat. Med. 9, 930–937 (2003).

    Article  CAS  Google Scholar 

  69. Dalod, M. et al. Weak anti-HIV CD8+ T-cell effector activity in HIV primary infection. J. Clin. Invest. 104, 1431–1439 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goulder, P.J. et al. Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J. Exp. Med. 193, 181–194 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Meyerhans, A. et al. In vivo persistence of a HIV-1-encoded HLA-B27-restricted cytotoxic T lymphocyte epitope despite specific in vitro reactivity. Eur. J. Immunol. 21, 2637–2640 (1991).

    Article  CAS  PubMed  Google Scholar 

  72. Hay, C.M. et al. Lack of viral escape and defective in vivo activation of human immunodeficiency virus type 1-specific cytotoxic T lymphocytes in rapidly progressive infection. J. Virol. 73, 5509–5519 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lieberman, J., Shankar, P., Manjunath, N. & Andersson, J. Dressed to kill? A review of why antiviral CD8 T lymphocytes fail to prevent progressive immunodeficiency in HIV-1 infection. Blood 98, 1667–1677 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Douek, D.C. et al. HIV preferentially infects HIV-specific CD4+ T cells. Nature 417, 95–98 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Malhotra, U. et al. Effect of combination antiretroviral therapy on T-cell immunity in acute human immunodeficiency virus type 1 infection. J. Infect. Dis. 181, 121–131 (2000).

    Article  CAS  PubMed  Google Scholar 

  76. Oxenius, A. et al. Early highly active antiretroviral therapy for acute HIV-1 infection preserves immune function of CD8+ and CD4+ T lymphocytes. Proc. Natl. Acad. Sci. USA 97, 3382–3387 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Collins, K.L., Chen, B.K., Kalams, S.A., Walker, B.D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397–401 (1998).

    Article  CAS  PubMed  Google Scholar 

  78. Yang, O.O. et al. Nef-mediated resistance of human immunodeficiency virus type 1 to antiviral cytotoxic T lymphocytes. J. Virol. 76, 1626–1631 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cohen, G.B. et al. The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10, 661–671 (1999).

    Article  CAS  PubMed  Google Scholar 

  80. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  81. Migueles, S.A. et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol. 3, 1061–1068 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8, 379–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Zhang, D. et al. Most antiviral CD8 T cells during chronic viral infection do not express high levels of perforin and are not directly cytotoxic. Blood 101, 226–235 (2003).

    Article  CAS  PubMed  Google Scholar 

  84. Kostense, S. et al. Persistent numbers of tetramer+ CD8(+) T cells, but loss of interferon-gamma+ HIV-specific T cells during progression to AIDS. Blood 99, 2505–2511 (2002).

    Article  CAS  PubMed  Google Scholar 

  85. Trimble, L.A., Shankar, P., Patterson, M., Daily, J.P. & Lieberman, J. Human immunodeficiency virus-specific circulating CD8 T lymphocytes have down-modulated CD3ζ and CD28, key signaling molecules for T-cell activation. J. Virol. 74, 7320–7330 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Autran, B. et al. Positive effects of combined antiretroviral therapy on CD4+ T cell homeostasis and function in advanced HIV disease. Science 277, 112–116 (1997).

    Article  CAS  PubMed  Google Scholar 

  87. Ogg, G.S. et al. Decay kinetics of human immunodeficiency virus-specific effector cytotoxic T lymphocytes after combination antiretroviral therapy. J. Virol. 73, 797–800 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Luzuriaga, K. et al. Early therapy of vertical human immunodeficiency virus type 1 (HIV-1) infection: control of viral replication and absence of persistent HIV-1-specific immune responses. J. Virol. 74, 6984–6991 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mascola, J.R. et al. Potent and synergistic neutralization of human immunodeficiency virus (HIV) type 1 primary isolates by hyperimmune anti-HIV immunoglobulin combined with monoclonal antibodies 2F5 and 2G12. J. Virol. 71, 7198–7206 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Brodie, S.J. et al. In vivo migration and function of transferred HIV-1-specific cytotoxic T cells. Nat. Med. 5, 34–41 (1999).

    Article  CAS  PubMed  Google Scholar 

  91. Koenig, S. et al. Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nat. Med. 1, 330–336 (1995).

    Article  CAS  PubMed  Google Scholar 

  92. Kovacs, J.A. et al. Increases in CD4 T lymphocytes with intermittent courses of interleukin-2 in patients with human immunodeficiency virus infection. A preliminary study. N. Engl. J. Med. 332, 567–575 (1996).

    Article  Google Scholar 

  93. Markowitz, M. et al. Discontinuation of antiretroviral therapy commenced early during the course of human immunodeficiency virus type 1 infection, with or without adjunctive vaccination. J. Infect. Dis. 186, 634–643 (2002).

    Article  CAS  PubMed  Google Scholar 

  94. Robbins, G. et al. Augmentation of HIV-1-specific Th cell responses in chronic HIV-1 infection by therapeutic immunization. AIDS (in the press).

  95. Lu, W., Wu, X., Lu, Y., Guo, W. & Andrieu, J.M. Therapeutic dendritic-cell vaccine for simian AIDS. Nat. Med. 9, 27–32 (2003).

    Article  CAS  PubMed  Google Scholar 

  96. Sun, J.C. & Bevan, M.J. Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339–342 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Shedlock, D.J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    Article  CAS  PubMed  Google Scholar 

  98. Rosenberg, E.S. et al. Immune control of HIV-1 after early treatment of acute infection. Nature 407, 523–526 (2000).

    Article  CAS  PubMed  Google Scholar 

  99. Lisziewicz, J. et al. Virus control following early treatment and discontinuation of antiretroviral therapy. N. Engl. J. Med. 340, 1683–1684 (2003).

    Article  Google Scholar 

  100. Oxenius, A. et al. Stimulation of HIV-specific cellular immunity by structured treatment interruption fails to enhance viral control in chronic HIV infection. Proc. Natl. Acad. Sci. USA 99, 13747–13752 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Altfeld, M. et al. Expansion of pre-existing, lymph node-localized CD8+ T cells during supervised treatment interruptions in chronic HIV-1 infection. J. Clin. Invest. 109, 837–843 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Garcia, F. et al. The virological and immunological consequences of structured treatment interruptions in chronic HIV-1 infection. AIDS 15, F29–F40 (2001).

    Article  CAS  PubMed  Google Scholar 

  103. Altfeld, M. et al. Cellular immune responses and viral diversity in individuals treated during acute and early HIV-1 infection. J. Exp. Med. 193, 169–180 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Altfeld, M. et al. HIV-1 superinfection despite broad CD8+ T-cell responses containing replication of the primary virus. Nature 420, 434–439 (2002).

    Article  CAS  PubMed  Google Scholar 

  105. Matloubian, M., Somasundaram, T., Kolhekar, S.R., Selvakumar, R. & Ahmed, R. Genetic basis of viral persistence: single amino acid change in the viral glycoprotein affects ability of lymphocytic choriomeningitis virus to persist in adult mice. Journal of Experimental Medicine 172, 1043–8 (1990).

    Article  CAS  Google Scholar 

  106. Matloubian, M., Kolhekar, S.R., Somasundaram, T. & Ahmed, R. Molecular determinants of macrophage tropism and viral persistence: importance of single amino acid changes in the polymerase and glycoprotein of lymphocytic choriomeningitis virus. J. Virol. 67, 7340–7349 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D Walker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letvin, N., Walker, B. Immunopathogenesis and immunotherapy in AIDS virus infections. Nat Med 9, 861–866 (2003). https://doi.org/10.1038/nm0703-861

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nm0703-861

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing