Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Molecular constraints to interspecies transmission of viral pathogens

Abstract

The successful replication of a viral pathogen in a host is a complex process involving many interactions. These interactions develop from the coevolution of pathogen and host and often lead to a species specificity of the virus that can make interspecies transmissions difficult. Nevertheless, viruses do sporadically cross species barriers into other host populations, including humans. In zoonotic infections, many of these interspecies transfer events are dead end, where transmission is confined only to the animal-to-human route but sometimes viruses adapt to enable spread from human to human. A pathogen must overcome many hurdles to replicate successfully in a foreign host. The viral pathogen must enter the host cell, replicate with the assistance of host factors, evade inhibitory host products, exit the first cell and move on to the next, and possibly leave the initial host and transmit to another. Each of these stages may require adaptive changes in the pathogen. Although the factors that influence each stage of the replication and transmission of most agents have not been resolved, the genomics of both hosts and pathogens are now at hand and we have begun to understand some of the molecular changes that enable some viruses to adapt to a new host.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Receptor specificities of influenza A viruses affect host range.
Figure 2: Distinct cellular tropism of influenza viruses in differentiated cultures of human tracheobronchial epithelial cells.
Figure 3: Molecular mechanisms for generating viral diversity.

Similar content being viewed by others

References

  1. Smolinski, M., Hamburg, M. & Lederberg, J. Microbial Threats to Health: Emergence, Detection, and Response. Institute of Medicine Report 2003.

    Google Scholar 

  2. Li, K.S. et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia. Nature 430, 209–213 (2004).

    Article  CAS  Google Scholar 

  3. Nie, Y. et al. Highly infectious SARS-CoV pseudotyped virus reveals the cell tropism and its correlation with receptor expression. Biochem. Biophys. Res. Commun. 321, 994–1000 (2004).

    Article  CAS  Google Scholar 

  4. Meyer, B.J., de la Torre, J.C. & Southern, P.J. Arenaviruses: genomic RNAs, transcription, and replication. Curr. Top. Microbiol. Immunol. 262, 139–157 (2002).

    CAS  PubMed  Google Scholar 

  5. Holmes, K.V., Zelus, B.D., Schickli, J.H. & Weiss, S.R. Receptor specificity and receptor-induced conformational changes in mouse hepatitis virus spike glycoprotein. Adv. Exp. Med. Biol. 494, 173–181 (2001).

    Article  CAS  Google Scholar 

  6. Thackray, L.B. & Holmes, K.V. Amino acid substitutions and an insertion in the spike glycoprotein extend the host range of the murine coronavirus MHV-A59. Virology 324, 510–524 (2004).

    Article  CAS  Google Scholar 

  7. Guan, Y et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).

    Article  CAS  Google Scholar 

  8. Webster, R.G. Wet markets—a continuing source of severe acute respiratory syndrome and influenza? Lancet 363, 234–236 (2004).

    Article  Google Scholar 

  9. Baranowski, E., Ruiz-Jarabo, C.M. & Domingo, E. Evolution of cell recognition by viruses. Science 292, 1102–1105 (2001).

    Article  CAS  Google Scholar 

  10. Couceiro, J.N., Paulson, J.C. & Baum, L.G. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity. Virus Res. 29, 155–165 (1993).

    Article  CAS  Google Scholar 

  11. Ito, T. et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 72, 7367–7373 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Beare, A.S. & Webster, R.G. Replication of avian influenza viruses in humans. Arch. Virol. 119, 37–42 (1991).

    Article  CAS  Google Scholar 

  13. Hinshaw, V.S., Webster, R.G., Easterday, B.C. & Bean, W.J. Replication of avian influenza A viruses in mammals. Infect. Immun. 34, 354–361 (1981).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hinshaw, V.S., Webster, R.G., Naeve, C.W. & Murphy, B.R. Altered tissue tropism of human-avian reassortant influenza viruses. Virology 128, 260–263 (1983).

    Article  CAS  Google Scholar 

  15. Murphy, B.R. et al. Virulence of avian influenza A viruses for squirrel monkeys. Infect. Immun. 37, 1119–1126 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Matrosovich, M., Zhou, N., Kawaoka, Y. & Webster, R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. J. Virol. 73, 1146–1155 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Matrosovich, M.N., Krauss, S. & Webster, R.G. H9N2 influenza A viruses from poultry in Asia have human virus-like receptor specificity. Virology 281, 156–162 (2001).

    Article  CAS  Google Scholar 

  18. Matrosovich, M.N., Matrosovich, T.Y., Gray, T., Roberts, N.A. & Klenk, H.D. Human and avian influenza viruses target different cell types in cultures of human airway epithelium. Proc. Natl. Acad. Sci. USA 101, 4620–4624 (2004).

    Article  CAS  Google Scholar 

  19. Blight, K.J., Kolykhalov, A.A. & Rice, C.M. Efficient initiation of HCV RNA replication in cell culture. Science 290, 1972–1974 (2000).

    Article  CAS  Google Scholar 

  20. Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. Proc. R. Soc. Lond. B 147, 258–267 (1957).

    Article  CAS  Google Scholar 

  21. Isaacs, A. & Burke, D.C. Mode of action of interferon. Nature 182, 1073–1074 (1958).

    Article  CAS  Google Scholar 

  22. Katze, M.G., He, Y. & Gale, M. Jr. Viruses and interferon: a fight for supremacy. Nat. Rev. Immunol. 2, 675–687 (2002).

    Article  CAS  Google Scholar 

  23. Krug, R.M., Yuan, W., Noah, D.L. & Latham, A.G. Intracellular warfare between human influenza viruses and human cells: the roles of the viral NS1 protein. Virology 309, 181–189 (2003).

    Article  CAS  Google Scholar 

  24. Park, M.S. et al. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J. Virol. 77, 1501–1511 (2003).

    Article  CAS  Google Scholar 

  25. Rodriguez, J.J., Parisien, J.P. & Horvath, C.M. Nipah virus V protein evades alpha and gamma interferons by preventing STAT1 and STAT2 activation and nuclear accumulation. J. Virol. 76, 11476–11483 (2002).

    Article  CAS  Google Scholar 

  26. Rodriguez, J.J., Wang, L.F. & Horvath, C.M. Hendra virus V protein inhibits interferon signaling by preventing STAT1 and STAT2 nuclear accumulation. J. Virol. 77, 11842–11845 (2003).

    Article  CAS  Google Scholar 

  27. Harcourt, B.H., Sanchez, A. & Offermann, M.K. Ebola virus inhibits induction of genes by double-stranded RNA in endothelial cells. Virology 252, 179–188 (1998).

    Article  CAS  Google Scholar 

  28. Enomoto, N. et al. Mutations in the nonstructural protein 5A gene and response to interferon in patients with chronic hepatitis C virus 1b infection. N. Engl. J. Med. 334, 77–81 (1996).

    Article  CAS  Google Scholar 

  29. Garcia-Sastre, A. et al. Influenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology 252, 324–330 (1998).

    Article  CAS  Google Scholar 

  30. Lu, Y., Wambach, M., Katze, M.G. & Krug, R.M. Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor. Virology 214, 222–228 (1995).

    Article  CAS  Google Scholar 

  31. Chen, Z., Li, Y. & Krug, R.M. Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery. EMBO J. 18, 2273–2283 (1999).

    Article  CAS  Google Scholar 

  32. Nemeroff, M.E., Barabino, S.M., Li, Y., Keller, W. & Krug, R.M. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′ end formation of cellular pre-mRNAs. Mol. Cell 1, 991–1000 (1998).

    Article  CAS  Google Scholar 

  33. Parisien, J.P., Lau, J.F. & Horvath, C.M. STAT2 acts as a host range determinant for species-specific paramyxovirus interferon antagonism and simian virus 5 replication. J. Virol. 76, 6435–6441 (2002).

    Article  CAS  Google Scholar 

  34. Kawaoka, Y., Krauss, S. & Webster, R.G. Avian-to-human transmission of the PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. J. Virol. 63, 4603–4608 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Scholtissek, C. & Rohde, W. von, H.V. & Rott, R. On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87, 13–20 (1978).

    Article  CAS  Google Scholar 

  36. Fujii, Y., Goto, H., Watanabe, T., Yoshida, T. & Kawaoka, Y. Selective incorporation of influenza virus RNA segments into virions. Proc. Natl. Acad. Sci. USA 100, 2002–2007 (2003).

    Article  CAS  Google Scholar 

  37. Webby, R.J. et al. Responsiveness to a pandemic alert: use of reverse genetics for rapid development of influenza vaccines. Lancet 363, 1099–1103 (2004).

    Article  CAS  Google Scholar 

  38. Sevilla, N., Domingo, E. & de la Torre, J.C. Contribution of LCMV towards deciphering biology of quasispecies in vivo. Curr. Top. Microbiol. Immunol. 263, 197–220 (2002).

    CAS  PubMed  Google Scholar 

  39. Lai, M.M. Genetic recombination in RNA viruses. Curr. Top. Microbiol. Immunol. 176, 21–32 (1992).

    CAS  PubMed  Google Scholar 

  40. Nagy, P.D. & Simon, A.E. New insights into the mechanisms of RNA recombination. Virology 235, 1–9 (1997).

    Article  CAS  Google Scholar 

  41. Suarez, D.L. et al. Recombination resulting in virulence shift in avian influenza outbreak, Chile. Emerg. Infect. Dis. 10, 693–699 (2004).

    Article  CAS  Google Scholar 

  42. Hahn, B.H., Shaw, G.M., De Cock, K.M. & Sharp, P.M. AIDS as a zoonosis: scientific and public health implications. Science 287, 607–614 (2000).

    Article  CAS  Google Scholar 

  43. Lemey, P. et al. Tracing the origin and history of the HIV-2 epidemic. Proc. Natl. Acad. Sci. USA 100, 6588–6592 (2003).

    Article  CAS  Google Scholar 

  44. Bieniasz, P.D. Restriction factors: a defense against retroviral infection. Trends Microbiol. 11, 286–291 (2003).

    Article  CAS  Google Scholar 

  45. Goff, S.P. Genetic control of retrovirus susceptibility in mammalian cells. Annu. Rev. Genet. advance online publication, 26 May 2004 (doi:10.1146/annurev.genet.38.072902.094136).

  46. Kobasa, D. et al. Enhanced virulence of influenza A viruses with the haemagglutinin of the 1918 pandemic virus. Nature 431, 703–707 (2004).

    Article  CAS  Google Scholar 

  47. Tumpey, T.M. et al. Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc. Natl. Acad. Sci. USA 101, 3166–3171 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Matrosovich for supplying data for this review and C. Walsh for editorial assistance. The preparation of this report was supported by contract AI95357 from the National Institute of Allergy and Infectious Diseases of the United States National Institutes of Health and from the American Lebanese Syrian Associated Charities (ALSAC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Webster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webby, R., Hoffmann, E. & Webster, R. Molecular constraints to interspecies transmission of viral pathogens. Nat Med 10 (Suppl 12), S77–S81 (2004). https://doi.org/10.1038/nm1151

Download citation

  • Issue date:

  • DOI: https://doi.org/10.1038/nm1151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing