Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of host immune responses by modification of Salmonella virulence genes

Abstract

Modifying bacterial virulence genes to probe the nature of host immunity is mostly unexplored. Here we investigate whether host immune responses can be regulated by modification of bacterial virulence genes. In mice, attenuated Salmonella mutant strains with clinical relevance elicited differential host immune responses. Oral administration of a mutant strain with a PhoP-null phenotype promoted potent innate immune responses of macrophages that were sufficient for host defense. In contrast, administration of an Aro mutant strain elicited stronger specific antibody and T-helper (Th)-cell responses, wherein Th1-type cells were required for clearance. Thus, genetic manipulation of bacteria may be used to broadly alter immune mechanisms that regulate attenuation within the host and to tailor host immunity to specific bacterial pathogens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Susceptibilities of normal and IFN-γ–/– mice to infection with Aroand PhoP S. typhimurium.
Figure 2: Th1- and Th2-type cytokine profiles and antibody responses in normal and IFN-γ–/– mice inoculated with Aroand PhoP strains of S. typhimurium or uninoculated (naive).
Figure 3: Effect of S. typhimurium mutant strains and wild-type bacteria on antimicrobial production in IFN-γ+/+, IFN-γ–/– and TCR-β × δ–/– mice.
Figure 4: Effects of L-NIL, allopurinol, TNF-α neutralization and recombinant TNF-α on the virulence of Aro and PhoP S. typhimurium in mice.
Figure 5: Effect of S. typhimurium mutant strains and wild-type bacteria on inflammatory responses in normal and IFN-γ–/– mice.

Similar content being viewed by others

References

  1. Levine, M.M. et al. Attenuated Salmonella as live oral vaccines against typhoid fever and as live vectors. J. Biotech. 44, 193–196 (1996).

    Article  CAS  Google Scholar 

  2. Jones, B.D. & Falkow, S. in Annual Review of Immunology Vol. 14 (eds. W.E. Paul, W.E., Fathman, C.G., & Metzger, H.) 533 (Annual Reviews, Palo Alto, California, 1996).

    Google Scholar 

  3. Miller, S.I., Kukraal, A.M. & Mekalanos, J.J. A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence. Proc. Natl. Acad. Sci. USA 86, 5054–5058 ( 1989).

    Article  CAS  Google Scholar 

  4. VanCott, J.L. et al. The host response to mucosal vaccines in the context of targeted gene knockout mice. Mucosal Immunol. Update 3 4, 12–14 (1995).

    Google Scholar 

  5. Hess, J., Ladel, C., Miko, D. & Kaufmann, S.H.E. Salmonella typhimurium aroA infection in gene-targeted immunodeficient mice: major role of CD4+ TCR-αβ cells and IFN-γ in bacterial clearance independent of intracellular location. J. Immunol. 156, 3321–3326 (1996).

    CAS  PubMed  Google Scholar 

  6. Weintraub, B.C. et al. Role of αβ and γβ T cells in the host response to Salmonella infection as demonstrated in T-cell-receptor-deficient mice of defined Ity genotypes. Infect. Immun. 65, 2306–2312 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Hoiseth, S.K. & Stocker, B.A.D. Aromatic-dependent Salmonella typhimurium are non-virulent and effective as live vaccines. Nature 291, 238–239 ( 1981).

    Article  CAS  Google Scholar 

  8. Galan, J.E. & R. Curtiss, III., R. Virulence and vaccine potential of phoP mutants of Salmonella typhimurium. Microb. Pathog. 6, 433–443 (1989).

    Article  CAS  Google Scholar 

  9. Chatfield, S.N. et al. Use of the nirB promoter to direct the stable expression of heterologous antigens in Salmonella oral vaccine strains: development of a single-dose oral tetanus vaccine. Bio/Technology 10, 888–892 (1992).

    CAS  PubMed  Google Scholar 

  10. Chatfield, S.N. et al. Evaluation of Salmonella typhimurium strains harbouring defined mutations in htrA and aroA in the murine salmonellosis model. Microb. Pathog. 12, 145–151 (1992).

    Article  CAS  Google Scholar 

  11. Tacket, C.O. et al. Comparison of the safety and immunogenicity of delta aroC delta aroD and delta cya delta crp Salmonella typhi strains in adult volunteers. Infect. Immun. 60, 536– 541 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hohmann, E.L., Oletta, C.A. & Miller, S.I. Evaluation of a phoP/phoQ-deleted, aroA-deleted live oral Salmonella typhi vaccine strain in human volunteers. Vaccine 14, 19–24 ( 1996).

    Article  CAS  Google Scholar 

  13. Dalton, D.K. et al. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259, 1739 –1742 (1993).

    Article  CAS  Google Scholar 

  14. Mombaerts, P. et al. Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature 360, 225–231 (1992).

    Article  CAS  Google Scholar 

  15. Itohara, S. et al. T cell receptor delta gene mutant mice: independent generation of alpha beta T cells and programmed rearrangements of gamma delta TCR genes. Cell 72, 337–348 (1993).

    Article  CAS  Google Scholar 

  16. Miller, S.I. & Mekalanos, J.J. Constitutive expression of the phoP regulon attenuates Salmonella virulence and survival within macrophages. J. Bacteriol. 172, 2485– 2490 (1990).

    Article  CAS  Google Scholar 

  17. Curtiss, R. & Kelly, S.M. Salmonella typhimurium deletion mutants lacking adenylate cyclase and cyclic AMP receptor protein are avirulent and immunogenic. Infect. Immun. 55, 3035 –3043 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Snapper, C.F. & Finkelman, F.D. in Fundamental Immunology 3rd edn. (ed. Paul, W.E.) 837–863 (Raven, New York, 1993).

    Google Scholar 

  19. De Groote, M.A., Testerman, T., Xu, Y., Stauffer, G., & Fang, F.C. Homocysteine antagonism of nitric oxide-related cytostasis in Salmonella typhimurium. Science 272, 414–417 (1996).

    Article  CAS  Google Scholar 

  20. Umezawa, K.H. et al. Induction of nitric oxide synthesis and xanthine oxidase and their roles in the antimicrobial mechanism against Salmonella typhimurium infection in mice. Infect. Immun. 65, 2932–2940 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Edwards III, C.K. et al. In vivo administration of recombinant growth hormone or gamma interferon activates macrophages: enhanced resistance to experimental Salmonella typhimurium infection is correlated with generation of reactive oxygen intermediates. Infect. Immun. 60 , 2514–2521 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Wright, S.D., Ramos, R.A., Tobias, P.S., Ulevitch, R.J., & Mathison, J.C. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein Science 249, 1431–1433 (1990).

    Article  CAS  Google Scholar 

  23. Guo, L. et al. Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 11, 250–253 (1997).

    Article  Google Scholar 

  24. Vidal, S. et al. The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J. Exp. Med. 182, 655–656 ( 1995).

    Article  CAS  Google Scholar 

  25. Lissner, C.R. Swanson, R.N. & O'Brien, A.D. Genetic control of the innate resistance of mice to Salmonella typhimurium: expression of the Ity gene in peritoneal and splenic macrophages isolated in vitro. J. Immunol. 131, 3006–3013 (1983).

    CAS  PubMed  Google Scholar 

  26. Thiemermann, C. The role of the L-Arginine: nitric oxide pathway in circulatory shock. Adv. Pharmacol. 28, 45–79 (1994).

    Article  CAS  Google Scholar 

  27. Gotschlich, E.C. in Fundamental Immunology 3rd edn. (ed. Paul, W.E.) 1287– 1308 (Raven, New York, 1993).

    Google Scholar 

  28. al-Ramadi, B.K., Brodkin, M.A., Mosser, D.M., & Eisenstein, T.K. Immunosuppression induced by attenuated Salmonella. J. Immunol. 146, 2737–2746 ( 1991).

    CAS  PubMed  Google Scholar 

  29. al-Ramadi, B.K., Meiss, Jr., J.J., Huang, D., & Eisenstein, T.K. Immunosuppression induced by nitric oxide and its inhibition by interleukin-4. Eur. J. Immunol. 22, 2249–2254 (1992).

    Article  CAS  Google Scholar 

  30. Miller, S.I., Pulkkinen, W.S., Selsted, M.E. & Mekalanos, J.J. Characterization of defensin resistance phenotypes associated with mutations in the phoP virulence regulon of Salmonella typhimurium. Infect. Immun. 58, 3706–3710 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Miller, S.I. PhoP/PhoQ: macrophage-specific modulators of Salmonella virulence? Mol. Microbiol. 5, 2073– 2078 (1991).

    Article  CAS  Google Scholar 

  32. Gunn, J.S. & Miller, S.I. PhoP-PhoQ activates transcription of pmrAB, encoding a two-component regulatory system involved in Salmonella typhimurium antimicrobial peptide resistance. J. Bacteriol. 178, 6857–6864 ( 1996).

    Article  CAS  Google Scholar 

  33. Soncini, F.C., Vescovi, G.E., Solmon, F., & Groisman, E.A. Molecular basis of the magnesium deprivation response in Salmonella typhimurium: identification of PhoP-regulated genes. J. Bacteriol. 178, 5092–5099 (1996).

    Article  CAS  Google Scholar 

  34. Cowley, S.C., Myltseva, S.V. & Nano, F.E. Phase variation in Francisella tularensis affecting intracellular growth, lipopolysaccharide antigenicity and nitric oxide production. Mol. Microbiol. 20, 867– 874 (1996).

    Article  CAS  Google Scholar 

  35. Eisenstein, T.K., Meissler J.J. Jr., Miller, S.I. & Stocker, B.A.D. Immunosuppression and nitric oxide production induced by parenteral live Salmonella vaccines do not correlate with protective capacity: a phoP::Tn10 mutant does not suppress but does protect. Vaccine 16, 24–32 ( 1998).

    Article  CAS  Google Scholar 

  36. Pawelek, J.M., Low, K.B. & Bermudes, D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 57, 4537– 4544 (1997).

    CAS  PubMed  Google Scholar 

  37. Green, L.C. et al. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal. Biochem. 126, 131–138 (1982).

    Article  CAS  Google Scholar 

  38. Gangadharam, P.R. & Edwards III, C.K. Release of superoxide anion from resident and activated mouse peritoneal macrophages infected with Mycobacterium intracellulare. Am. Rev. Respir. Dis . 130, 834–838 ( 1984).

    Article  CAS  Google Scholar 

  39. Darveau, R.P. & Hancock, R.E. Procedure for isolation of bacterial lipopolysaccharides from both smooth and rough Pseudomonas aeruginosa and Salmonella typhimurium strains. J. Bacteriol. 155, 831-838 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. VanCott. J.L. et al. Regulation of mucosal and systemic antibody responses by T helper cell subsets, macrophages, and derived cytokines following oral immunization with live recombinant Salmonella. J. Immunol . 156, 1504–1514 ( 1996).

    CAS  PubMed  Google Scholar 

  41. Fujihashi, K. et al. in Methods of Microbiology: Immunology of Infection (eds. Kaufman, S.H.E. & Kabelitz, D.) 257–286 (Academic, San Diego, 1998).

    Book  Google Scholar 

  42. Yang, J., Kawamura, I., Zhu, H., & Mitsuyama, M. Involvement of natural killer cells in nitric oxide production by spleen cells after stimulation with Mycobacterium bovis BCG. J. Immunol. 155 , 5728–5735 (1995).

    CAS  PubMed  Google Scholar 

  43. Szalai, A.J., Briles, D.E. & Volanakis, J.E. Human C-reactive protein is protective against fatal Streptococcus pneumoniae infection in transgenic mice. J. Immunol . 155, 2557–2563 ( 1995).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank F. Fang for critical reading of the manuscript, B. Stocker for construction of strain SL7731 for these studies, and A. Szalai for running SAP ELISA. This work was supported by NIH grants AI 18958, DK 44240, RR 13149 and USDA grant 9602195, as well as grants from the Ministry of Education, Science, Sports and Culture and OPSR in Japan.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

VanCott, J., Chatfield, S., Roberts, M. et al. Regulation of host immune responses by modification of Salmonella virulence genes. Nat Med 4, 1247–1252 (1998). https://doi.org/10.1038/3227

Download citation

  • Received:

  • Accepted:

  • Issue date:

  • DOI: https://doi.org/10.1038/3227

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing