Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity

Abstract

We developed a new class of vaccines, based on killed but metabolically active (KBMA) bacteria, that simultaneously takes advantage of the potency of live vaccines and the safety of killed vaccines. We removed genes required for nucleotide excision repair (uvrAB), rendering microbial-based vaccines exquisitely sensitive to photochemical inactivation with psoralen and long-wavelength ultraviolet light. Colony formation of the nucleotide excision repair mutants was blocked by infrequent, randomly distributed psoralen crosslinks, but the bacterial population was able to express its genes, synthesize and secrete proteins. Using the intracellular pathogen Listeria monocytogenes as a model platform, recombinant psoralen-inactivated Lm ΔuvrAB vaccines induced potent CD4+ and CD8+ T-cell responses and protected mice against virus challenge in an infectious disease model and provided therapeutic benefit in a mouse cancer model. Microbial KBMA vaccines used either as a recombinant vaccine platform or as a modified form of the pathogen itself may have broad use for the treatment of infectious disease and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: L. monocytogenes nucleotide excision repair mutants are exquisitely sensitive to photochemical inactivation and are metabolically active.
Figure 2: Photochemically inactivated L. monocytogenes nucleotide excision repair mutant vaccines induce class I reponses.
Figure 3: S-59/UVA Lm ΔactAΔuvrAB-OVA elicit functional CD8+ T cells in vaccinated mice and protect against a subsequent viral challenge.
Figure 4: Nucleotide excision repair mutation confers therapeutic efficacy of S-59/UVA Lm ΔactAΔuvrAB-AH1-A5 vaccines in tumor-bearing animals.
Figure 5: S-59/UVA Lm ΔactA/ΔuvrAB vaccines protect immunized mice against wild-type L. monocytogenes challenge.

Similar content being viewed by others

References

  1. Rappuoli, R. From Pasteur to genomics: progress and challenges in infectious diseases. Nat. Med. 10, 1177–1185 (2004).

    Article  CAS  Google Scholar 

  2. Wollowitz, S. Fundamentals of the psoralen-based Helinx technology for inactivation of infectious pathogens and leukocytes in platelets and plasma. Semin. Hematol. 38 4 Suppl. 11, 4–11 (2001).

    Article  CAS  Google Scholar 

  3. Sancar, A. & Sancar, G.B. DNA repair enzymes. Ann. Rev. Biochem. 57, 29–67 (1988).

    Article  CAS  Google Scholar 

  4. Unanue, E.R. Studies in listeriosis show the strong symbiosis between the innate cellular system and the T-cell response. Immunol. Rev. 158, 11–25 (1997).

    Article  CAS  Google Scholar 

  5. Harty, J.T., Tvinnereim, A.R. & White, D.W. CD8+ T cell effector mechanisms in resistance to infection. Ann. Rev. Immunol. 18, 275–308 (2000).

    Article  CAS  Google Scholar 

  6. Pamer, E.G. Immune responses to Listeria monocytogenes . Nat. Rev. Immunol. 4, 812–823 (2004).

    Article  CAS  Google Scholar 

  7. Brunt, L.M., Portnoy, D.A. & Unanue, E.R. Presentation of Listeria monocytogenes to CD8+ T cells requires secretion of hemolysin and intracellular bacterial growth. J. Immunol. 145, 3540–3546 (1990).

    CAS  PubMed  Google Scholar 

  8. Portnoy, D.A., Auerbuch, V. & Glomski, I.J. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell. Biol. 158, 409–414 (2002).

    Article  CAS  Google Scholar 

  9. O'Riordan, M., Yi, C.H., Gonzales, R., Lee, K.D. & Portnoy, D.A. Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc. Natl. Acad. Sci. USA 99, 13861–13866 (2002).

    Article  CAS  Google Scholar 

  10. O'Connell, R.M. et al. Type I interferon production enhances susceptibility to Listeria monocytogenes infection. J. Exp. Med. 200, 437–445 (2004).

    Article  CAS  Google Scholar 

  11. Carrero, J.A., Calderon, B. & Unanue, E.R. Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J. Exp. Med. 200, 535–540 (2004).

    Article  CAS  Google Scholar 

  12. Auerbuch, V., Brockstedt, D.G., Meyer-Morse, N., O'Riordan, M. & Portnoy, D.A. Mice lacking the type I interferon receptor are resistant to Listeria monocytogenes . J. Exp. Med. 200, 527–533 (2004).

    Article  CAS  Google Scholar 

  13. Lauvau, G. et al. Priming of memory but not effector CD8 T cells by a killed bacterial vaccine. Science 294, 1735–1739 (2001).

    Article  CAS  Google Scholar 

  14. Brockstedt, D.G. et al. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration. Clin. Immunol. 92, 67–75 (1999).

    Article  CAS  Google Scholar 

  15. Janion, C. Some aspects of the SOS response system–a critical survey. Acta Biochim. Pol. 48, 599–610 (2001).

    CAS  PubMed  Google Scholar 

  16. Berche, P., Gaillard, J.L. & Sansonetti, P.J. Intracellular growth of Listeria monocytogenes as a prerequisite for in vivo induction of T cell-mediated immunity. J. Immunol. 138, 2266–2271 (1987).

    CAS  PubMed  Google Scholar 

  17. Shen, Z., Reznikoff, G., Dranoff, G. & Rock, K.L. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J. Immunol. 158, 2723–2730 (1997).

    CAS  PubMed  Google Scholar 

  18. Auerbuch, V., Loureiro, J.J., Gertler, F.B., Theriot, J.A. & Portnoy, D.A. Ena/VASP proteins contribute to Listeria monocytogenes pathogenesis by controlling temporal and spatial persistence of bacterial actin-based motility. Mol. Microbiol. 49, 1361–1375 (2003).

    Article  CAS  Google Scholar 

  19. Harty, J.T. & Bevan, M.J. CD8+ T cells specific for a single nonamer epitope of Listeria monocytogenes are protective in vivo . J. Exp. Med. 175, 1531–1538 (1992).

    Article  CAS  Google Scholar 

  20. Jensen, E.R. et al. Recombinant Listeria monocytogenes vaccination eliminates papillomavirus-induced tumors and prevents papilloma formation from viral DNA. J. Virol. 71, 8467–8474 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Paterson, Y. & Ikonomidis, G. Recombinant Listeria monocytogenes cancer vaccines. Curr. Opin. Immunol. 5, 664–669 (1996).

    Article  Google Scholar 

  22. Slansky, J.E. et al. Enhanced antigen-specific antitumor immunity with altered peptide ligands that stabilize the MHC-peptide-TCR complex. Immunity 13, 529–538 (2000).

    Article  CAS  Google Scholar 

  23. Huang, A.Y. et al. The immunodominant major histocompatibility complex class I-restricted antigen of a murine colon tumor derives from an endogenous retroviral gene product. Proc. Natl. Acad. Sci. USA 93, 9730–9735 (1996).

    Article  CAS  Google Scholar 

  24. Shedlock, D.J. & Shen, H. Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337–339 (2003).

    Article  CAS  Google Scholar 

  25. Sawitzke, J.A. & Austin, S. Suppression of chromosome segregation defects of Escherichia coli muk mutants by mutations in topoisomerase I. Proc. Natl. Acad. Sci. USA 97, 1671–1676 (2000).

    Article  CAS  Google Scholar 

  26. Kolb-Maurer, A. et al. Listeria monocytogenes-infected human dendritic cells: uptake and host cell response. Infection and Immunity 68, 3680–3688 (2000).

    Article  CAS  Google Scholar 

  27. Kolb-Maurer, A. et al. Production of IL-12 and IL-18 in human dendritic cells upon infection by Listeria monocytogenes . FEMS Immunol. Med. Microbiol. 35, 255–262 (2003).

    Article  CAS  Google Scholar 

  28. Case Report: Use of anthrax vaccine in the United States: recommendations of the advisory committee on immunization practices. Clinical Toxicology 39, 85–100 (2001).

  29. Reuveny, S. et al. Search for correlates of protective immunity conferred by anthrax vaccine. Infect. Immun. 69, 2888–2893 (2001).

    Article  CAS  Google Scholar 

  30. Brockstedt, D.G. et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc. Natl. Acad. Sci. USA 101, 13832–13837 (2004).

    Article  CAS  Google Scholar 

  31. Starks, H. et al. Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J. Immunol. 173, 420–427 (2004).

    Article  CAS  Google Scholar 

  32. Gunn, G.R. et al. Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors Immortalized by HPV-161 . J. Immunol. 167, 6471–6479 (2001).

    Article  CAS  Google Scholar 

  33. Pan, Z.-K., Ikonomidis, G., Pardoll, D. & Paterson, Y. Regression of established tumors in mice mediated by the oral administration of a recombinant Listeria monocytogenes vaccine. Cancer Research 55, 4776–4779 (1995).

    CAS  PubMed  Google Scholar 

  34. Shen, H. et al. Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc. Natl. Acad. Sci. USA 92, 3987–3991 (1995).

    Article  CAS  Google Scholar 

  35. Liau, L.M. et al. Tumor immunity within the central nervous system stimulated by recombinant Listeria monocytogenes vaccination. Cancer Res. 62, 2287–2293 (2002).

    CAS  PubMed  Google Scholar 

  36. Peters, C., Peng, X., Douven, D., Pan, Z.-K. & Paterson, Y. The induction of HIV gag-specific CD8+ T cells in the spleen and gut-associated lymphoid tissue by parenteral or mucosal immunization with recombinant listeria monocytogenes HIV gag. J. Immunol. 170, 5176–5187 (2003).

    Article  CAS  Google Scholar 

  37. Lauer, P., Chow, M.Y., Loessner, M.J., Portnoy, D.A. & Calendar, R. Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J. Bacteriol. 184, 4177–4178 (2002).

    Article  CAS  Google Scholar 

  38. Horton, R.M., Cai, Z.L., Ho, S.N. & Pease, L.R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8, 528–535 (1990).

    CAS  PubMed  Google Scholar 

  39. Camilli, A., Tilney, L.G. & Portnoy, D.A. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol. Microbiol. 8, 143–157 (1993).

    Article  CAS  Google Scholar 

  40. Wilson, C. Preparation of genomic DNA from bacteria. in Current Protocols in Molecular Biology (eds. Ausubel, F.M. et al.) 2.4.1–2.4.5 (John Wiley & Sons, Hoboken, New Jersey, 1997).

    Google Scholar 

  41. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    Article  CAS  Google Scholar 

  42. Malarkannan, S. & Shastri, N. Generation of antigen-specific, lacZ-inducible T-cell hybrids. Methods Mol. Biol. 156, 1–8 (2000).

    Google Scholar 

  43. Geginat, G., Schenk, S., Skoberne, M., Goebel, W. & Hof, H. A novel approach of direct ex vivo epitope mapping identifies dominant and subdominant CD4 and CD8 T cell epitopes from Listeria monocytogenes . J. Immunol. 166, 1877–1884 (2001).

    Article  CAS  Google Scholar 

  44. Alexander-Miller, M.A., Leggatt, G.R. & Berzofsky, J.A. Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc. Natl. Acad. Sci. USA 93, 4102–4107 (1996).

    Article  CAS  Google Scholar 

  45. Busch, D.H.C. Animal model for infection with Listeria monocytogenes . Current Protocols in Immunology Vol. 3. (eds. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W.) 19.9.1–19.9.9 (John Wiley & Sons, Hoboken, New Jersey, 2000).

    Google Scholar 

  46. Lenz, L.L. & Portnoy, D.A. Identification of a second Listeria secA gene associated with protein secretion and the rough phenotype. Mol. Microbiol. 45, 1043–1056 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank D. Pardoll, J. Skoble, P. Lauer and A. North for their discussions, suggestions and critical review of this manuscript, and J. Cox for his suggestion of the KBMA acronym.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T W Dubensky Jr..

Ethics declarations

Competing interests

D.G. Brockstedt, K.S. Bahjat, M.A. Giedlin, W. Liu, M. Leong, W. Luckett, Y. Gao, G. Castro, J.Y.H. Lim, A. Sampson-Johannes, A. Stassinopoulos, J.E. Hearst, D.N. Cook and T.W. Dubensky, Jr.are employees of Cerus Corporation, which owns intellectual property covering the compositions and methods described in this manuscript. In addition, Cerus employees hold stock and/or stock options in the company. D.A. Portnoy is is a paid consultant to the company and holds stock options. The remaining authors have no known financial interest in Cerus.

Additional information

Veterans Affairs Medical Center, Department of Molecular Microbiology and Immunology, Oregon Health Sciences University, 3710 SW US Veterans Hospital Road, Portland, Oregon 97201, USA.

Supplementary information

Supplementary Fig. 1

Psoralen inactivated Lm actA/uvrAB continue to express and to secrete proteins after photochemical inactivation. (PDF 1234 kb)

Supplementary Fig. 2

Psoralen inactivated Lm actA/uvrAB -AH1-A5 induce cytotoxic T cells in vivo. (PDF 1446 kb)

Supplementary Fig. 3

KBMA B.anthracis uvrAB (Sterne)are exquisitely sensitive to photochemical inactivation. (PDF 1037 kb)

Supplementary Methods (PDF 21 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brockstedt, D., Bahjat, K., Giedlin, M. et al. Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat Med 11, 853–860 (2005). https://doi.org/10.1038/nm1276

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm1276

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing