Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque

Abstract

Development of therapeutic agents for severe acute respiratory syndrome (SARS) viral infection using short interfering RNA (siRNA) inhibitors exemplifies a powerful new means to combat emerging infectious diseases. Potent siRNA inhibitors of SARS coronavirus (SCV) in vitro were further evaluated for efficacy and safety in a rhesus macaque (Macaca mulatta) SARS model using clinically viable delivery while comparing three dosing regimens. Observations of SARS-like symptoms, measurements of SCV RNA presence and lung histopathology and immunohistochemistry consistently showed siRNA-mediated anti-SARS efficacy by either prophylactic or therapeutic regimens. The siRNAs used provided relief from SCV infection–induced fever, diminished SCV viral levels and reduced acute diffuse alveoli damage. The 10–40 mg/kg accumulated dosages of siRNA did not show any sign of siRNA-induced toxicity. These results suggest that a clinical investigation is warranted and illustrate the prospects for siRNA to enable a massive reduction in development time for new targeted therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selection and validation of siRNA duplexes targeting SCV sequence.
Figure 2: Severity of lung histopathology in SCV-challenged macaques.
Figure 3: Histopathological characteristics of SCV-infected macaque lungs.
Figure 4: siSC2-5 relieved SARS symptoms.
Figure 5: siSC2-5 inhibits SCV replication.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Fouchier, R.A. et al. Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423, 240 (2003).

    Article  CAS  Google Scholar 

  2. Kuiken, T. et al. Newly discovered coronavirus as the primary cause of severe acute respiratory syndrome. Lancet 362, 263–270 (2003).

    Article  CAS  Google Scholar 

  3. Ksiazek, T.G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966 (2003).

    Article  CAS  Google Scholar 

  4. Peiris, J.S. et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325 (2003).

    Article  CAS  Google Scholar 

  5. Guan, Y. et al. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science 302, 276–278 (2003).

    Article  CAS  Google Scholar 

  6. Chinese SARS Molecular Epidemiology Consortium. Molecular evolution of the SARS coronavirus during the course of the SARS epidemic in China. Science 303, 1666–1669 (2004).

  7. Snijder, E.J. et al. Unique and conserved features of genome and proteome of SARS-conronavirus, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004 (2003).

    Article  CAS  Google Scholar 

  8. Marra, M.A. et al. The genome sequence of the SARS-associated coronavirus. Science 300, 1399–1404 (2003).

    Article  CAS  Google Scholar 

  9. Nicholls, J.M. et al. Lung pathology of fatal severe acute respiratory syndrome. Lancet 361, 1773–1778 (2003).

    Article  Google Scholar 

  10. Peiris, J.S. et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet 361, 1767–1772 (2003).

    Article  CAS  Google Scholar 

  11. Bisht, H. et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectiveloy immunizes mice. Proc. Natl. Acad. Sci. USA 101, 6641–6646 (2004).

    Article  CAS  Google Scholar 

  12. Bukreyev, A. et al. Mucosal immunization of African green monkeys (Cercopithecus aethiops) with an attenuated parainfluenza virus expressing the SARS coronavirus spike protein for the prevention of SARS. Lancet 363, 2122–2127 (2004).

    Article  CAS  Google Scholar 

  13. Yang, Z. et al. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature 428, 561–564 (2004).

    Article  CAS  Google Scholar 

  14. Hogan, R. et al. Resolution of primary severe acute respiratory syndrome-associated coronavirus infection requires Stat1. J. Virol. 78, 11416–11421 (2004).

    Article  CAS  Google Scholar 

  15. Zhong, N.S. et al. Epidemiological and cause of severe acute respiratory syndrome (SARS) in Guangdong, People's Republic of China, in February, 2003. Lancet 362, 1353–1358 (2004).

    Article  Google Scholar 

  16. Subbarao, K. et al. Prior infection and passive transfer of neutralizing antibody prevent replication of severe acute respiratory syndrome coronavirus in the respiratory tract of mice. J. Virol. 78, 3572–3577 (2004).

    Article  CAS  Google Scholar 

  17. Hensley, L. et al. Interferon-β 1a and SARS coronavirus replication. Emerg. Infect. Dis. 10, 317–319 (2004).

    Article  CAS  Google Scholar 

  18. Sainz, B. Jr . et al. Interferon-beta and interferon-gamma synergistically inhibit the replication of severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Virology 329, 11–17 (2004).

    Article  CAS  Google Scholar 

  19. Haagmans, B.L. et al. Pegylated interferon-α protects type 1 pneumocytes against SARS coronavirus infection in macaques. Nat. Med. 10, 290–293 (2004).

    Article  CAS  Google Scholar 

  20. Rowe, T. et al. Macaque model for severe acute respiratory syndrome. J. Virol. 78, 11401–11404 (2004).

    Article  CAS  Google Scholar 

  21. Chen, Z. et al. Recombinant modified vaccinia virus ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J. Virol. 79, 2678–2688 (2005).

    Article  CAS  Google Scholar 

  22. Qin, C. et al. An animal model of SARS produced by infection of macaca mulata with SARS coronavirus. J. Pathol. 206, 251–259 (2005).

    Article  Google Scholar 

  23. Joost Haasnoot, P.C.J., Cupac, D. & Berkhout, B. Inhibition of virus replication by RNA interference. J. Biomed. Sci. 10, 607–616 (2003).

    Article  CAS  Google Scholar 

  24. Zheng, B. et al. Prophylactic and therapeutic effects of small interfering RNA targeting SARS-coronavirus. Antivir. Ther. 9, 365–374 (2004).

    CAS  PubMed  Google Scholar 

  25. Elmen, J. et al. SARS virus inhibited by siRNA. Preclinica. 2, 135–142 (2004).

    CAS  Google Scholar 

  26. Zhang, Y. et al. Silencing SARS-CoV protein expression in cultured cells by RNA interference. FEBS Lett. 560, 141–146 (2004).

    Article  CAS  Google Scholar 

  27. Zhang, R. et al. Inhibiting severe acute respiratory syndrome-associated coronavirus by small interfering RNA. Chin. Med. J. (Engl.) 116, 1262–1264 (2003).

    CAS  Google Scholar 

  28. Wang, Z. et al. Inhibition of severe acute respiratory syndrome virus replication by small interfering RNAs in mammalian cells. J. Virol. 78, 7523–7527 (2004).

    Article  CAS  Google Scholar 

  29. Ghanayem, N.S. et al. Stability of dopamine and epinephrine solutions up to 84 hours. Pediatr. Crit. Care Med. 2, 315–317 (2001).

    Article  CAS  Google Scholar 

  30. Thomas, N.J. et al. Cost-effectiveness of exogenous surfactant therapy in pediatric patients with acute hypoxemic respiratory failure. Pediatr. Crit. Care Med. 6, 160–165 (2005).

    Article  Google Scholar 

  31. Lu, P.Y., Enist, D. & Mina, M. Method of achieving persistent transgene expression. US patent application. 20030148975, PCT/EP00/13297 (2000).

  32. Massaro, D., Massaro, G.D. & Clerch, L.B. Noninvasive delivery of small inhibitory RNA and other reagents to pulmonary alveoli in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 287, L1066–1070 (2004).

    Article  CAS  Google Scholar 

  33. Bitko, V., Musiyenko, A., Shulyayeva, O. & Barik, S. Inhibition of respiratory viruses by nasally administered siRNA. Nat. Med. 11, 50–55 (2004).

    Article  Google Scholar 

  34. Tompkins, S.M., Lo, C.Y., Tumpey, T.M. & Epstein, S.L. Protection against lethal influenza virus challenge by RNA interference in vivo. Proc. Natl. Acad. Sci. USA 101, 8682–8686 (2004).

    Article  CAS  Google Scholar 

  35. Ge, Q. et al. Inhibition of influenza virus production in virus-infected mice by RNA interference. Proc. Natl. Acad. Sci. USA 101, 8676–8681 (2004).

    Article  CAS  Google Scholar 

  36. Boeckle, S. et al. Purification of polyethylenimine polyplexes highlights the role of free polycations in gene transfer. J. Gene Med. 6, 1102–1111 (2004).

    Article  CAS  Google Scholar 

  37. Delepine, P. et al. Biodistribution study of phosphonolipids: a class of non-viral vectors efficient in mice lung-directed gene transfer. J. Gene Med. 5, 600–608 (2003).

    Article  CAS  Google Scholar 

  38. Bonnard, E., Mazarguil, H. & Zajac, J.M. Peptide nucleic acids targeted to the mouse proNPFF(A) reveal an endogenous opioid tonus. Peptides 23, 1107–1113 (2002).

    Article  CAS  Google Scholar 

  39. Semizarov, D. et al. Specificity of short interfering RNA determined through gene expression signatures. Proc. Natl. Acad. Sci. USA 100, 6347–6352 (2003).

    Article  CAS  Google Scholar 

  40. Chi, J.T. et al. Genomewide view of gene silencing by small interfering RNAs. Proc. Natl. Acad. Sci. USA 100, 6364–6369 (2003).

    Article  Google Scholar 

  41. Jackson, A. et al. Expression profiling reveals off-target gene regulation by RNAi. Nat. Biotechnol. 21, 635–637 (2003).

    Article  CAS  Google Scholar 

  42. Sledz, C.A. et al. Activation of the interferon system by short-interfering RNAs. Nat. Cell Biol. 5, 834–839 (2003).

    Article  CAS  Google Scholar 

  43. Kariko, K., Bhuyan, P., Capodici, J. & Weissman, D. Small interfering RNAs mediate sequence-independent gene suppression and induce immune activation by signaling through toll-like receptor 3. J. Immunol. 172, 6545–6549 (2004).

    Article  CAS  Google Scholar 

  44. Judge, A.D. et al. Sequence-dependent stimulation of the mammalian innate immune response by synthetic siRNA. Nat. Biotechnol. 23, 457–462 (2005).

    Article  CAS  Google Scholar 

  45. Hornung, V. et al. Sequence-specific potent inductin of IFN-α by short interfering RNA in plasmacytoid dentritic cells through TLR7. Nat. Med. 11, 263–70 (2005).

    Article  CAS  Google Scholar 

  46. Heidel, J.D. et al. Lack of interferon response in animals to naked siRNAs. Nat. Biotechnol. 22, 1579–1582 (2004).

    Article  CAS  Google Scholar 

  47. Ware, L.B. & Matthay, M.A. The acute respiratory distress syndrome. N. Engl. J. Med. 342, 1334–1349 (2000).

    Article  CAS  Google Scholar 

  48. Yuen, K.Y. et al. Clinical features and rapid viral diagnosis of human disease associated with avian influenza A H5N1 virus. Lancet 351, 467–471 (1998).

    Article  CAS  Google Scholar 

  49. Huang, K.J. et al. An interferon-gamma-related cytokine storm in SARS patients. J. Med. Virol. 75, 185–194 (2005).

    Article  CAS  Google Scholar 

  50. Cinatl, J. et al. Treatment of SARS with human interferons. Lancet 362, 293–294 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the Science and Technology Commission, Guangdong Provincial Government, Guangzhou Science and Technology Bureau, Guangzhou Economic & Technological Development District, and China World Trade Corporation (Guangzhou), Top Biotech, Ltd. (Hong Kong), China. We thank C. Lu, X.S. Zhang and D.C. Zheng of Top Genomics, Ltd. (Guangzhou) for their administrative work to coordinate and facilitate the study; H. Gao, X.M. Tu, L.L. Bao, W. Deng and B.L. Zhang of Institute of Laboratory Animal Science and L. Ruan of Institute of Virology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, for their supports during the study; W. Tian and E. Lader of Qiagen for their collaborative efforts; Y.Y. Gu of Guangzhou Institute of Respiratory Diseases for her advice on lung pathological analysis; and ONY Inc. Amherst, New York, USA for providing Infasurf.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nanshan Zhong or Patrick Y Lu.

Ethics declarations

Competing interests

Bao-jian Li and Frank Y Xie are consultants for and Du Cheng is an employee of Guangzhou Top Genomics, Ltd. Qingquan Tang, Frank Y. Xie, Yijia Liu, Martin C. Woodle and Patrick Y. Liu are employees of Intradigm Corporation. Both Top Genomics, Ltd. and Intradigm Corporation are biopharmaceutical companies that are developing RNAi therapeutics for the treatment of human disease.

Supplementary information

Supplementary Fig. 1

siSC2-5 protect cells from CPE after SCV infection. (PDF 105 kb)

Supplementary Fig. 2

SCV RNA detection in lung tissues. (PDF 187 kb)

Supplementary Table 1

Blood biochemistry tests. (PDF 80 kb)

Supplementary Table 2

Routine blood tests. (PDF 76 kb)

Supplementary Table 3

Internal organ coefficient of tested animals. (PDF 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Bj., Tang, Q., Cheng, D. et al. Using siRNA in prophylactic and therapeutic regimens against SARS coronavirus in Rhesus macaque. Nat Med 11, 944–951 (2005). https://doi.org/10.1038/nm1280

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm1280

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing