Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • On the Market
  • Published:

Detection of virus-specific T cells and CD8+ T-cell epitopes by acquisition of peptide–HLA-GFP complexes: analysis of T-cell phenotype and function in chronic viral infections

Abstract

Antigen-specific CD8+ T cells acquire peptide–major histocompatibility complex (MHC) clusters through T-cell receptor (TCR)–mediated endocytosis after specific antigen stimulation. We generated an antigen-presenting cell (APC) expressing human leukocyte antigen (HLA)-A*201 coupled to the enhanced green fluorescent protein (GFP), which delivered GFP to an antigen-specific T cell when pulsed with antigenic peptide. We quantitatively identified human T-cell lymphotropic virus type I (HTLV-I) Tax(11–19) peptide–specific T-cell populations in peripheral blood mononuclear cells (PBMCs) from patients with HTLV-I–associated neurologic disease and defined a new CD8+ T-cell epitope in the HTLV-I envelope region. Acquisition of peptide–HLA-GFP complexes by antigen-specific T cells could distinguish, with respect to phenotype and perforin production, T cells from the chronic viral infections cytomegalovirus and HTLV-I. This approach will be a powerful tool in understanding the role of antigen-specific T-cell responses in health and disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Peptide-specific acquisition of peptide–HLA-GFP complexes by HTLV-I–specific CTL clones.
Figure 2: Quantitative detection of virus-specific CD8+ T cells from bulk PBMCs of HLA-A*201–positive HAM/TSP patients.
Figure 3: Detection of a new CD8+ T-cell epitope from the envelope region of HTLV-I.
Figure 4: Phenotypic and functional characterization of HTLV-I Tax(11–19)- and CMV pp65–specific T cells in PBMCs from HAM/TSP patients.

References

  1. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  2. Huang, J.F. et al. TCR-mediated internalization of peptide-MHC complexes acquired by T cells. Science 286, 952–954 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Gessain, A. et al. Antibodies to human T-lymphotropic virus type-I in patients with tropical spastic paraparesis. Lancet 2, 407–410 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. Osame, M. et al. HTLV-I associated myelopathy, a new clinical entity. Lancet 1, 1031–1032 (1986).

    Article  CAS  PubMed  Google Scholar 

  6. Jacobson, S., Shida, H., McFarlin, D.E., Fauci, A.S. & Koenig, S. Circulating CD8+ cytotoxic T lymphocytes specific for HTLV-I pX in patients with HTLV-I associated neurological disease. Nature 348, 245–248 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Bangham, C.R. The immune response to HTLV-I. Curr. Opin. Immunol. 12, 397–402 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Yamano, Y. et al. Correlation of human T-cell lymphotropic virus type 1 (HTLV-1) mRNA with proviral DNA load, virus-specific CD8+ T cells, and disease severity in HTLV-1-associated myelopathy (HAM/TSP). Blood 99, 88–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Jacobson, S. Immunopathogenesis of human T cell lymphotropic virus type I-associated neurologic disease. J. Infect. Dis. 186 (suppl. 2), S187–S192 (2002).

    Article  PubMed  Google Scholar 

  10. Frangione-Beebe, M. et al. Enhanced immunogenicity of a conformational epitope of human T- lymphotropic virus type 1 using a novel chimeric peptide. Vaccine 19, 1068–1081 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Mendez, E. et al. Astrocyte-specific expression of human T-cell lymphotropic virus type 1 (HTLV-1) Tax: induction of tumor necrosis factor α and susceptibility to lysis by CD8+ HTLV-1-specific cytotoxic T cells. J. Virol. 71, 9143–9149 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Parker, K.C., Bednarek, M.A. & Coligan, J.E. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152, 163–175 (1994).

    CAS  PubMed  Google Scholar 

  13. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8, 379–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407–1418 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Osame, M. Pathological mechanisms of human T-cell lymphotropic virus type I-associated myelopathy (HAM/TSP). J. Neurovirol. 8, 359–364 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Nagai, M. et al. Analysis of HTLV-I proviral load in 202 HAM/TSP patients and 243 asymptomatic HTLV-I carriers: high proviral load strongly predisposes to HAM/TSP. J. Neurovirol. 4, 586–593 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  PubMed  Google Scholar 

  19. Winter, C.C., Carreno, B.M., Turner, R.V., Koenig, S. & Biddison, W.E. The 45 pocket of HLA-A2.1 plays a role in presentation of influenza virus matrix peptide and alloantigens. J. Immunol. 146, 3508–3512 (1991).

    CAS  PubMed  Google Scholar 

  20. Osame, M. Review of WHO Kagoshima meeting and diagnostic guidelines for HAM/TSP. in Human Retrovirology HTLV (ed. Blattner, W.) 191–197 (Raven Press, New York, 1990).

    Google Scholar 

  21. Kubota, R., Soldan, S.S., Martin, R. & Jacobson, S. An altered peptide ligand antagonizes antigen-specific T cells of patients with human T lymphotropic virus type I-associated neurological disease. J. Immunol. 164, 5192–5198 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Yao, S. Gagnon and S. Soldan for helpful comments, and R. Turner for help with flow cytometry. U.T. was supported by the Japanese Society for the Promotion of Science and a US National Institutes of Health Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Jacobson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tomaru, U., Yamano, Y., Nagai, M. et al. Detection of virus-specific T cells and CD8+ T-cell epitopes by acquisition of peptide–HLA-GFP complexes: analysis of T-cell phenotype and function in chronic viral infections. Nat Med 9, 469–475 (2003). https://doi.org/10.1038/nm845

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing