Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever

Abstract

Dengue virus presents a growing threat to public health in the developing world. Four major serotypes of dengue virus have been characterized, and epidemiological evidence shows that dengue hemorrhagic fever (DHF), the more serious manifestation of the disease, occurs more frequently upon reinfection with a second serotype. We have studied dengue virus–specific T-cell responses in Thai children. During acute infection, few dengue-responsive CD8+ T cells were recovered; most of those present showed an activated phenotype and were undergoing programmed cell death. Many dengue-specific T cells were of low affinity for the infecting virus and showed higher affinity for other, probably previously encountered strains. Profound T-cell activation and death may contribute to the systemic disturbances leading to DHF, and original antigenic sin in the T-cell responses may suppress or delay viral elimination, leading to higher viral loads and increased immunopathology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defining a new HLA-A*11–restricted T-cell epitope.
Figure 2: T-cell responses in dengue-infected patients.
Figure 3: Analysis of responses using an HLA-A*11 tetramer.
Figure 4: Programmed cell death in dengue-specific CD8+ T cells.
Figure 5: Differential avidities of T cells for dengue serotypes.

Similar content being viewed by others

References

  1. Vaughn, D.W. et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J. Infect. Dis. 181, 2–9 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Fact sheet no. 117: Dengue and dengue haemorrhagic fever (World Health Organization, Geneva, 2002).

  3. Sangkawibha, N. et al. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am. J. Epidemiol. 120, 653–669 (1984).

    Article  CAS  PubMed  Google Scholar 

  4. Guzman, M.G. et al. Epidemiologic studies on dengue in Santiago de Cuba, 1997. Am. J. Epidemiol. 152, 793–799 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Halstead, S.B. et al. Dengue hemorrhagic fever in infants: research opportunities ignored. Emerg. Infect. Dis. 8, 1474–1479 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Halstead, S.B. In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J. Infect. Dis. 140, 527–533 (1979).

    Article  CAS  PubMed  Google Scholar 

  7. Halstead, S. & O'Rourke, E. Antibody-enhanced dengue virus infection in primate leukocytes. Nature 265, 739–741 (1977).

    Article  CAS  PubMed  Google Scholar 

  8. Rothman, A.L. & Ennis, F.A. Immunopathogenesis of dengue hemorrhagic fever. Virology 257, 1–6 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Zivna, I. et al. T cell responses to an HLA-B*07-restricted epitope on the dengue NS3 protein correlate with disease severity. J. Immunol. 168, 5959–5965 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Chandanayingyong, D. et al. HLA-A, -B, -DRB1, -DQA1, and -DQB1 polymorphism in Thais. Hum. Immunol. 53, 174–182 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Kurane, I. & Ennis, F.A. Cytotoxic T lymphocytes in dengue virus infection. Curr. Top. Microbiol. Immunol. 189, 93–108 (1994).

    CAS  PubMed  Google Scholar 

  12. Mathew, A. et al. Dominant recognition by human CD8+ cytotoxic T lymphocytes of dengue virus nonstructural proteins NS3 and NS1.2a. J. Clin. Invest. 98, 1684–1691 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yenchitsomanus, P.T. et al. Rapid detection and identification of dengue viruses by polymerase chain reaction (PCR). Southeast Asian J. Trop. Med. Public Health 27, 228–236 (1996).

    CAS  PubMed  Google Scholar 

  14. Vorridam, V., & Kuno, G. Laboratory diagnosis of dengue virus infections. in Dengue and Dengue Hemorrhagic Fever (eds. Gubler, D.J., & Kuno, G.) 313–333 (Cabi Publishers, Wallingford, UK, 1997).

    Google Scholar 

  15. Innis, B.L. et al. An enzyme-linked immunosorbent assay to characterize dengue infections where dengue and Japanese encephalitis co-circulate. Am. J. Trop. Med. Hyg. 40, 418–427 (1989).

    Article  CAS  PubMed  Google Scholar 

  16. Clarke, D.H. & Casals, J. Techniques for heamaggutination and heamagglutination inhibition with arthropod-borne viruses. Am. J. Trop. Med. Hyg. 7, 561–573 (1958).

    Article  CAS  PubMed  Google Scholar 

  17. Dengue haemorrhagic fever: diagnostic, treatment, prevention and control (World Health Organization, Geneva, 1997).

  18. Lechner, F. et al. Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med. 191, 1499–1512 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zajac, A.J. et al. Viral immune evasion due to persistence of activated T cells without effector function. J. Exp. Med. 188, 2205–2213 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gallimore, A. et al. Induction and exhaustion of lymphocytic choriomeningitis virus-specific cytotoxic T lymphocytes visualized using soluble tetrameric major histocompatibility complex class I-peptide complexes. J. Exp. Med. 187, 1383–1393 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8, 379–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Halstead, S.B., Rojanasuphot, S. & Sangkawibha, N. Original antigenic sin in dengue. Am. J. Trop. Med. Hyg. 32, 154–156 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. Aichele, P. et al. Peptide antigen treatment of naive and virus-immune mice: antigen-specific tolerance versus immunopathology. Immunity 6, 519–529 (1997).

    Article  CAS  PubMed  Google Scholar 

  24. Klenerman, P. & Zinkernagel, R.M. What can we learn about human immunodeficiency virus infection from a study of lymphocytic choriomeningitis virus? Immunol. Rev. 159, 5–16 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Fazekas de St, G. & Webster, R.G. Disquisitions of original antigenic sin. I. Evidence in man. J. Exp. Med. 124, 331–345 (1966).

    Article  Google Scholar 

  26. Veiga-Fernandes, H., Walter, U., Bourgeois, C., McLean, A. & Rocha, B. Response of naive and memory CD8+ T cells to antigen stimulation in vivo. Nat. Immunol. 1, 47–53 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Alexander-Miller, M., Leggatt, G. & Berzofsky, J. Selective expansion of high- or low-avidity cytotoxic T lymphocytes and efficacy for adoptive immunotherapy. Proc. Natl. Acad. Sci. USA 93, 4102–4107 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Klenerman, P. & Zinkernagel, R.M. Original antigenic sin impairs cytotoxic T lymphocyte responses to viruses bearing variant epitopes. Nature 394, 482–485 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Chen, H.D. et al. Memory CD8+ T cells in heterologous antiviral immunity and immunopathology in the lung. Nat. Immunol. 2, 1067–1076 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Selin, L.K., Varga, S.M., Wong, I.C. & Welsh, R.M. Protective heterologous antiviral immunity and enhanced immunopathogenesis mediated by memory T cell populations. J. Exp. Med. 188, 1705–1715 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, S.J. et al. Human skin Langerhans cells are targets of dengue virus infection. Nat. Med. 6, 816–820 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Libraty, D.H., Pichyangkul, S., Ajariyakhajorn, C., Endy, T.P. & Ennis, F.A. Human dendritic cells are activated by dengue virus infection: enhancement by gamma interferon and implications for disease pathogenesis. J. Virol. 75, 3501–3508 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Von Herrath, M., Coon, B. & Oldstone, M. Low-affinity cytotoxic T-lymphocytes require IFN-gamma to clear an acute viral infection. Virology 229, 349–349 (1997).

    Article  CAS  PubMed  Google Scholar 

  34. Combadiere, B., Sousa, C.R., Germain, R.N. & Lenardo, M.J. Selective induction of apoptosis in mature T lymphocytes by variant T cell receptor ligands. J. Exp. Med. 187, 349–355 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Russell, P.K., Nisalak, A., Sukhavachana, P. & Vivona, S. A plaque reduction test for dengue virus neutralizing antibodies. J. Immunol. 99, 285–290 (1967).

    CAS  PubMed  Google Scholar 

  36. Krausa, P., Barouch, D., Bodmer, J.G. & Browning, M.J. Rapid characterization of HLA class I alleles by gene mapping using ARMS PCR. Eur. J. Immunogenet. 22, 283–287 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Altman, J.D. et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94–96 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Savage, P., Boniface, J. & Davis, M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485–492 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Davenport, M., Fazou, C., McMichael, A. & Callan, M. Clonal selection, clonal senescence, and clonal succession: the evolution of the T cell response to infection with a persistent virus. J. Immunol. 168, 3309–3317 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S. Chunharas at the National Health Foundation, Thailand; M. Mammem and A Nisalak at the Armed Forces Research Institute of Medical Science, Thailand; T. Roston and K. Digleria at the Medical Research Council Human Immunology Unit, UK; P. Petpirin, O. Keawsrikaow, S. Jinatongthai, M. Mitchai, C. Ratchatane and S. Sima at Khonkhaen Hospital, Thailand; Sasithorn Bejrachandra Siriraj Hospital, Thailand; and M. Callan and P. Klenerman for useful discussion. This work was supported by the Medical Research Council UK (J.M., X.X., T.D., S.R.J., A.M and G.S.), the Senior Research Scholar Program of the Thailand Research Fund (P.M.), a Royal Golden Jubilee Award from the Thailand Research Fund (W.D.) and the Royal Thai Government Doctoral Scholarship (T.D.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Prida Malasit or Gavin Screaton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mongkolsapaya, J., Dejnirattisai, W., Xu, Xn. et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med 9, 921–927 (2003). https://doi.org/10.1038/nm887

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing