Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversion of CTL escape–variant immunodeficiency viruses in vivo

Abstract

Engendering cytotoxic T-lymphocyte (CTL) responses is likely to be an important goal of HIV vaccines. However, CTLs select for viral variants that escape immune detection. Maintenance of such escape variants in human populations could pose an obstacle to HIV vaccine development. We first observed that escape mutations in a heterogeneous simian immunodeficiency virus (SIV) isolate were lost upon passage to new animals. We therefore infected macaques with a cloned SIV bearing escape mutations in three immunodominant CTL epitopes, and followed viral evolution after infection. Here we show that each mutant epitope sequence continued to evolve in vivo, often re-establishing the original, CTL-susceptible sequence. We conclude that escape from CTL responses may exact a cost to viral fitness. In the absence of selective pressure upon transmission to new hosts, these original escape mutations can be lost. This suggests that some HIV CTL epitopes will be maintained in human populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence variation in macaques challenged with SIVppm, a biological isolate with amino acid replacements in CTL epitopes restricted by common macaque MHC class I molecules Mamu-A*01 (Tat SL8), Mamu-A*02 (Nef YY9) and Mamu-B*17 (Nef IW9).
Figure 2: Reduced fitness of 3x SIV in vitro.
Figure 3: 3x SIV replication in vivo.
Figure 4: Epitope mutations are largely preserved in Mamu-A*01/B*17 double-positive macaques infected with 3x SIV.
Figure 5: Two of three 3x SIV epitope sequences evolve toward wild type in Mamu-A*01/B*17 double-negative macaques.

Similar content being viewed by others

References

  1. Burton, D.R. Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2, 706–713 (2002).

    Article  CAS  Google Scholar 

  2. Ho, D.D. & Huang, Y. The HIV-1 vaccine race. Cell 110, 135–138 (2002).

    Article  CAS  Google Scholar 

  3. Richman, D.D., Wrin, T., Little, S.J. & Petropoulos, C.J. Rapid evolution of the neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci. USA 100, 4144–4149 (2003).

    Article  CAS  Google Scholar 

  4. Wei, X. et al. Antibody neutralization and escape by HIV-1. Nature 422, 307–312 (2003).

    Article  CAS  Google Scholar 

  5. McMichael, A.J. & Rowland-Jones, S.L. Cellular immune responses to HIV. Nature 410, 980–987 (2001).

    Article  CAS  Google Scholar 

  6. Walker, B.D. & Korber, B.T. Immune control of HIV: the obstacles of HLA and viral diversity. Nat. Immunol. 2, 473–475 (2001).

    Article  CAS  Google Scholar 

  7. McMichael, A.J. & Hanke, T. HIV vaccines 1983-2003. Nat. Med. 9, 874–880 (2003).

    Article  CAS  Google Scholar 

  8. Borrow, P., Lewicki, H., Hahn, B.H., Shaw, G.M. & Oldstone, M.B. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J. Virol. 68, 6103–6110 (1994).

    CAS  Google Scholar 

  9. Koup, R.A. et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J. Virol. 68, 4650–4655 (1994).

    CAS  Google Scholar 

  10. Jin, X. et al. Dramatic rise in plasma viremia after CD8+ T cell depletion in simian immunodeficiency virus-infected macaques. J. Exp. Med. 189, 991–998 (1999).

    Article  CAS  Google Scholar 

  11. Matano, T. et al. Administration of an anti-CD8 monoclonal antibody interferes with the clearance of chimeric simian/human immunodeficiency virus during primary infections of rhesus macaques. J. Virol. 72, 164–169 (1998).

    CAS  Google Scholar 

  12. Schmitz, J.E. et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857–860 (1999).

    Article  CAS  Google Scholar 

  13. Phillips, R.E. et al. Human immunodeficiency virus genetic variation that can escape cytotoxic T cell recognition. Nature 354, 453–459 (1991).

    Article  CAS  Google Scholar 

  14. Koenig, S. et al. Transfer of HIV-1-specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants and subsequent disease progression. Nat. Med. 1, 330–336 (1995).

    Article  CAS  Google Scholar 

  15. Wolinsky, S.M. et al. Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection. Science 272, 537–542 (1996).

    Article  CAS  Google Scholar 

  16. Borrow, P. et al. Antiviral pressure exerted by HIV-1-specific cytotoxic T lymphocytes (CTLs) during primary infection demonstrated by rapid selection of CTL escape virus. Nat. Med. 3, 205–211 (1997).

    Article  CAS  Google Scholar 

  17. Goulder, P.J. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat. Med. 3, 212–217 (1997).

    Article  CAS  Google Scholar 

  18. Price, D.A. et al. Positive selection of HIV-1 cytotoxic T lymphocyte escape variants during primary infection. Proc. Natl. Acad. Sci. USA 94, 1890–1895 (1997).

    Article  CAS  Google Scholar 

  19. Evans, D.T. et al. Virus-specific cytotoxic T-lymphocyte responses select for amino-acid variation in simian immunodeficiency virus env and Nef. Nat. Med. 5, 1270–1276 (1999).

    Article  CAS  Google Scholar 

  20. Allen, T.M. et al. Tat-specific cytotoxic T lymphocytes select for SIV escape variants during resolution of primary viraemia. Nature 407, 386–390 (2000).

    Article  CAS  Google Scholar 

  21. Kelleher, A.D. et al. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J. Exp. Med. 193, 375–386 (2001).

    Article  CAS  Google Scholar 

  22. McMichael, A. T cell responses and viral escape. Cell 93, 673–676 (1998).

    Article  CAS  Google Scholar 

  23. O'Connor, D.H. et al. Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection. Nat. Med. 8, 493–499 (2002).

    Article  CAS  Google Scholar 

  24. Moore, C.B. et al. Evidence of HIV-1 adaptation to HLA-restricted immune responses at a population level. Science 296, 1439–1443 (2002).

    Article  CAS  Google Scholar 

  25. Barouch, D.H. et al. Eventual AIDS vaccine failure in a rhesus monkey by viral escape from cytotoxic T lymphocytes. Nature 415, 335–339 (2002).

    Article  CAS  Google Scholar 

  26. Goulder, P.J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).

    Article  CAS  Google Scholar 

  27. Regier, D.A. & Desrosiers, R.C. The complete nucleotide sequence of a pathogenic molecular clone of simian immunodeficiency virus. AIDS Res. Hum. Retroviruses 6, 1221–1231 (1990).

    Article  CAS  Google Scholar 

  28. O'Connor, D.H. et al. Major histocompatibility complex class I alleles associated with slow simian immunodeficiency virus disease progression bind epitopes recognized by dominant acute-phase cytotoxic-T-lymphocyte responses. J. Virol. 77, 9029–9040 (2003).

    Article  CAS  Google Scholar 

  29. Mothe, B.R. et al. Dominance of CD8 responses specific for epitopes bound by a single major histocompatibility complex class I molecule during the acute phase of viral infection. J. Virol. 76, 875–884 (2002).

    Article  CAS  Google Scholar 

  30. Friedrich, T.C. et al. Extra-epitopic compensatory substitutions restore fitness to simian immunodeficiency virus variants that escape from an immunodominant cytotoxic T-lymphocyte response. J. Virol. (in the press).

  31. Peyerl, F.W. et al. Simian-human immunodeficiency virus escape from cytotoxic T-lymphocyte recognition at a structurally constrained epitope. J. Virol. 77, 12572–12578 (2003).

    Article  CAS  Google Scholar 

  32. Vogel, T.U. et al. Escape in one of two cytotoxic T-lymphocyte epitopes bound by a high-frequency major histocompatibility complex class I molecule, Mamu-A*02: a paradigm for virus evolution and persistence? J. Virol. 76, 11623–11636 (2002).

    Article  CAS  Google Scholar 

  33. Rue, S.M., Roos, J.W., Amzel, L.M., Clements, J.E. & Barber, S.A. Hydrogen bonding at a conserved threonine in lentivirus capsid is required for virus replication. J. Virol. 77, 8009–8018 (2003).

    Article  CAS  Google Scholar 

  34. von Schwedler, U.K., Stray, K.M., Garrus, J.E. & Sundquist, W.I. Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J. Virol. 77, 5439–5450 (2003).

    Article  CAS  Google Scholar 

  35. Knapp, L.A., Lehmann, E., Hennes, L., Eberle, M.E. & Watkins, D.I. High-resolution HLA-DRB typing using denaturing gradient gel electrophoresis and direct sequencing. Tissue Antigens 50, 170–177 (1997).

    Article  CAS  Google Scholar 

  36. Hance, A.J. et al. Changes in human immunodeficiency virus type 1 populations after treatment interruption in patients failing antiretroviral therapy. J. Virol. 75, 6410–6417 (2001).

    Article  CAS  Google Scholar 

  37. Sidney, J. et al. Definition of the Mamu A*01 peptide binding specificity: application to the identification of wild-type and optimized ligands from simian immunodeficiency virus regulatory proteins. J. Immunol. 165, 6387–6399 (2000).

    Article  CAS  Google Scholar 

  38. Mothe, B.R. et al. Characterization of the peptide-binding specificity of Mamu-B*17 and identification of Mamu-B*17-restricted epitopes derived from simian immunodeficiency virus proteins. J. Immunol. 169, 210–219 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge J. Helgeland, J. Mitchen, C. Bunger, K. Vielhuber and E. Rakasz; I. Bolton and the veterinarians and technicians of the WNPRC; and T. Jacoby and W. Rehrauer for their work in support of this study. We also thank W. Rehrauer for critical review of this manuscript. This work was supported by National Institutes of Health grants RO1-AI-46366, RO1-AI-49120 and RO1-AI-52056 to D.I.W., and P51 RR001676-43 to the WNPRC. D.I.W. is an Elizabeth Glaser Scientist. A.S. is supported by NIH-NIAID contract NO1-AI-95362.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I Watkins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedrich, T., Dodds, E., Yant, L. et al. Reversion of CTL escape–variant immunodeficiency viruses in vivo. Nat Med 10, 275–281 (2004). https://doi.org/10.1038/nm998

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm998

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing