Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly

Abstract

In general, magnetic properties of bulk magnetic materials are independent of the humidity of the environment. To obtain a magnetic material that has humidity-sensitive characteristics, water vapour must penetrate the lattice and act on spin sites. Nanoporous materials composed of metal-assembled complexes1,2,3,4 may be expected to display some humidity response because materials in this category can show functionalities such as gas storage and molecular recognition. Here, we demonstrate humidity-induced reversible variations in the magnetic properties of cyano-bridged cobalt(II)–manganese(II)–chromium(III) metal assemblies. The observed magnetic humidity response is due to adsorption and desorption of a ligand water molecule on the cobalt ion, which changes cobalt (II) between a 6- and 4-fold coordination geometry and switches the magnetic interaction between ferromagnetic coupling and antiferromagnetic coupling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in colour and magnetic properties of CoII[CrIII(CN)6]2/3·zH2O and (CoII0.41MnII0.59)[CrIII(CN)6]2/3·zH2O depend on the humidity.
Figure 2: Variations in water content, an optical property, and crystal structure of CoII[CrIII(CN)6]2/3·zH2O depend on the humidity.
Figure 3: Mechanism of the humidity-induced change in magnetization on CoII[CrIII(CN)6]2/3·zH2O.
Figure 4: Mechanism of the humidity-induced magnetic pole inversion on (CoII0.41MnII0.59)[CrIII(CN)6]2/3·zH2O.

Similar content being viewed by others

References

  1. Desiraju, G. R. Crystal Engineering: The Design of Organic Solids (Elsevier, Amsterdam, The Netherlands, 1989).

    Google Scholar 

  2. Lehn, J. M. Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, Germany, 1995).

    Book  Google Scholar 

  3. Braga, D., Grepioni, F. & Orpen, A. G. Crystal Engineering: From Molecules and Crystals to Materials (Kluwer Academic, Dordrecht, The Netherlands, 1999).

    Book  Google Scholar 

  4. Sedden, K. R. & Zaworotko, M. Crystal Engineering: The Design and Application of Functional Solids (Kluwer, Dordrecht, The Netherlands, 1999).

    Book  Google Scholar 

  5. Ohkoshi, S. & Hashimoto, K. Ferromagnetism of cobalt-chromium polycyanides. Chem. Phys. Lett. 314, 210–214 (1999).

    Article  CAS  Google Scholar 

  6. Verdaguer, M. et al. Molecules to build solids: high TC molecule-based magnets by design and recent revival of cyano complexes chemistry. Coord. Chem. Rev. 190–192, 1023–1047 (1999).

    Article  Google Scholar 

  7. Sato, Y., Ohkoshi, S., Arai, K., Tozawa, M. & Hashimoto, K. Solvatomagnetism-induced faraday effect in a cobalt hexacyanochromate-based magnet. J. Am. Chem. Soc. 125, 14590–14595 (2003).

    Article  CAS  Google Scholar 

  8. Griebler, W. D. & Babel, D. X-ray and magnetic studies of perovskite-related cyano compounds CsMIIMIII(CN)6 . Z. Naturforsch. B 87, 832–837 (1982).

    Article  Google Scholar 

  9. Entley, W. R. & Girolami, G. S. High-temperature molecular magnets based on cyanovanadate building-blocks – spontaneous magnetization at 230 K. Science 268, 397–400 (1995).

    Article  CAS  Google Scholar 

  10. Ferlay, S., Mallah, T., Ouahès, R., Veillet, P. & Verdaguer, M. A room-temperature organometallic magnet based on Prussian blue. Nature 378, 701–703 (1995).

    Article  CAS  Google Scholar 

  11. Hatlevik, Ø., Buschmann, W. E., Zhang, J., Manson, J. L. & Miller, J. S. Enhancement of the magnetic ordering temperature and air stability of a mixed valent vanadium hexacyanochromate(III) magnet to 99 °C (372 K). Adv. Mater. 11, 914–918 (1999).

    Article  CAS  Google Scholar 

  12. Ohkoshi, S., Mizuno, M., Hung, G. & Hashimoto, K. Magnetooptical effects of room temperature molecular-based magnetic films composed of vanadium hexacyanochromates. J. Phys. Chem. B 104, 9365–9367 (2000).

    Article  CAS  Google Scholar 

  13. Burgess, J. Metal Ions in Solution (Ellis Horwood, New York, 1978).

    Google Scholar 

  14. Wilkins, R. G. Kinetics and Mechanism of Reactions of Transition Metal Complexes (VCH, Weinheim, Germany, 1991).

    Book  Google Scholar 

  15. Beauvais, L. G., Shores, M. P. & Long, J. R. Cyano-bridged Re6Q8 (Q = S, Se) cluster-cobalt(II) framework materials: versatile solid chemical sensors. J. Am. Chem. Soc. 122, 2763–2772 (2000).

    Article  CAS  Google Scholar 

  16. Vallee, B. L. & Holmquist, B. Methods for Determining Metal Ion Environments in Proteins: Structure and Function of Metalloproteins (Elsevier/North-Holland, New York, 1980).

    Google Scholar 

  17. Ludi, A. & Güdel, H. U. Structural Chemistry of Polynuclear Transition Metal Cyanides: Structure and Bonding Vol. 14 (Springer, Berlin, 1973).

    Book  Google Scholar 

  18. Ohkoshi, S., Iyoda, T., Fujishima, A. & Hashimoto, K. Magnetic properties of mixed ferro-ferrimagnets composed of Prussian blue analogs. Phys. Rev. B 56, 11642–11652 (1997).

    Article  CAS  Google Scholar 

  19. Ohkoshi, S., Abe, Y., Fujishima, A. & Hashimoto, K. Design and preparation of a novel magnet exhibiting two compensation temperatures based on molecular field theory. Phys. Rev. Lett. 82, 1285–1288 (1999).

    Article  CAS  Google Scholar 

  20. Zvezdin, A. K. & Kotov, V. A. Modern Magnetooptics and Magnetooptical Materials (IOP, Bristol, Philadelphia, 1997).

    Google Scholar 

  21. Sugano, S. & Kojima, N. Magneto-Optics (Springer, Berlin, 2000).

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank H. Tokoro for preparing the colour illustration. The present research is supported in part by a Grant for 21st Century COE Program Human-Friendly Materials based on Chemistry and a Grand-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shin-ichi Ohkoshi or Kazuhito Hashimoto.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkoshi, Si., Arai, Ki., Sato, Y. et al. Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly. Nature Mater 3, 857–861 (2004). https://doi.org/10.1038/nmat1260

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nmat1260

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing