Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Multifunctional nanoarchitectures from DNA-based ABC monomers

Abstract

The ability to attach different functional moieties to a molecular building block1,2 could lead to applications in nanoelectronics3, nanophotonics4, intelligent sensing5 and drug delivery6,7. The building unit needs to be both multivalent and anisotropic, and although many anisotropic building blocks have been created1,8,9,10,11,12, these have not been universally applicable. Recently, DNA has been used to generate various nanostructures13,14,15,16,17 or hybrid systems18,19,20,21,22,23,24,25, and as a generic building block for various applications26,27,28,29,30. Here, we report the creation of anisotropic, branched and crosslinkable building blocks (ABC monomers) from which multifunctional nanoarchitectures have been assembled. In particular, we demonstrate a target-driven polymerization process in which polymers are generated only in the presence of a specific DNA molecule, leading to highly sensitive pathogen detection. Using this monomer system, we have also designed a biocompatible nanovector that delivers both drugs and tracers simultaneously. Our approach provides a general yet versatile route towards the creation of a range of multifunctional nanoarchitectures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the assembly of an ABC monomer and target-driven photo-polymerization.
Figure 2: ABC monomers with precisely positioned fluorescence dyes and nanoparticles.
Figure 3: Photo-polymerization and characterization of ABC monomers.
Figure 4: Detection of pathogen DNA by means of target-driven polymerization of ABC monomers.
Figure 5: Microscopic images of a HeLa cell treated with polymeric spheres at 37 °C overnight and cytotoxicity studies.

Similar content being viewed by others

References

  1. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nature Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  2. Grill, L. et al. Nanoarchitectures by covalent assembly of molecular building blocks. Nature Nanotech. 2, 687–691 (2007).

    Article  CAS  Google Scholar 

  3. Javey, A., Nam, S., Friedman, R. S., Yan, H. & Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 7, 773–777 (2007).

    Article  CAS  Google Scholar 

  4. Slocik, J. M., Tam, F., Halas, N. J. & Naik, R. R. Peptide-assembled optically responsive nanoparticle complexes. Nano Lett. 7, 1054–1058 (2007).

    Article  CAS  Google Scholar 

  5. Pregibon, D. C., Toner, M. & Doyle, P. S. Multifunctional encoded particles for high-throughput biomolecule analysis. Science 315, 1393–1396 (2007).

    Article  CAS  Google Scholar 

  6. Torchilin, V. P. Multifunctional nanocarriers. Adv. Drug Del. Rev. 58, 1532–1555 (2006).

    Article  CAS  Google Scholar 

  7. Salem, A. K., Searson, P. C. & Leong, K. W. Multifunctional nanorods for gene delivery. Nature Mater. 2, 668–671 (2003).

    Article  CAS  Google Scholar 

  8. Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

    Article  CAS  Google Scholar 

  9. Busby, M., Kerschbaumer, H., Calzaferri, G. & De Cola, L. Orthogonally bifunctional fluorescent zeolite-L microcrystals. Adv. Mater. 20, 1614–1618 (2008).

    Article  CAS  Google Scholar 

  10. Popovic, Z., Otter, M., Calzaferri, G. & De Cola, L. Self-assembling living systems with functional nanomaterials. Angew Chem. Int. Ed. 46, 6188–6191 (2007).

    Article  CAS  Google Scholar 

  11. Lee, C. C. et al. A single dose of doxorubicin-functionalized bow-tie dendrimer cures mice bearing C-26 colon carcinomas. Proc. Natl Acad. Sci. USA 103, 16649–16654 (2006).

    Article  CAS  Google Scholar 

  12. Lee, C. C., Mackay, J. A., Frechet, J. M. & Szoka, F. C. Designing dendrimers for biological applications. Nature Biotechnol. 23, 1517–1526 (2005).

    Article  CAS  Google Scholar 

  13. Goodman, R. P. et al. Reconfigurable, braced, three-dimensional DNA nanostructures. Nature Nanotech. 3, 93–96 (2008).

    Article  CAS  Google Scholar 

  14. Venkataraman, S., Dirks, R. M., Rothemund, P. W., Winfree, E. & Pierce, N. A. An autonomous polymerization motor powered by DNA hybridization. Nature Nanotech. 2, 490–494 (2007).

    Article  Google Scholar 

  15. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  16. Seeman, N. C. DNA in a material world. Nature 421, 427–431 (2003).

    Article  Google Scholar 

  17. He, Y. et al. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008).

    Article  CAS  Google Scholar 

  18. Xu, X., Rosi, N. L., Wang, Y., Huo, F. & Mirkin, C. A. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J. Am. Chem. Soc. 128, 9286–9287 (2006).

    Article  CAS  Google Scholar 

  19. Fu, A. et al. Discrete nanostructures of quantum dots/Au with DNA. J. Am. Chem. Soc. 126, 10832–10833 (2004).

    Article  CAS  Google Scholar 

  20. Feldkamp, U. & Niemeyer, C. M. Rational design of DNA nanoarchitectures. Angew Chem. Int. Ed. 45, 1856–1876 (2006).

    Article  CAS  Google Scholar 

  21. Zheng, J. et al. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

    Article  CAS  Google Scholar 

  22. Lin, C., Liu, Y. & Yan, H. Self-assembled combinatorial encoding nanoarrays for multiplexed biosensing. Nano Lett. 7, 507–512 (2007).

    Article  CAS  Google Scholar 

  23. Park, S. H. et al. Programmable DNA self-assemblies for nanoscale organization of ligands and proteins. Nano Lett. 5, 729–733 (2005).

    Article  CAS  Google Scholar 

  24. Rinker, S., Ke, Y., Liu, Y., Chhabra, R. & Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand–protein binding. Nature Nanotech. 3, 418–422 (2008).

    Article  CAS  Google Scholar 

  25. Claridge, S. A., Liang, H. W., Basu, S. R., Frechet, J. M. & Alivisatos, A. P. Isolation of discrete nanoparticle–DNA conjugates for plasmonic applications. Nano Lett. 8, 1202–1206 (2008).

    Article  CAS  Google Scholar 

  26. Li, Y. et al. Controlled assembly of dendrimer-like DNA. Nature Mater. 3, 38–42 (2004).

    Article  CAS  Google Scholar 

  27. Li, Y., Cu, Y. T. & Luo, D. Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes. Nature Biotechnol. 23, 885–889 (2005).

    Article  CAS  Google Scholar 

  28. Um, S. H., Lee, J., Kwon, S., Li, Y. & Luo, D. Dendrimer-like DNA (DL-DNA) based fluorescence nanobarcodes. Nature Protoc. 1, 995–1000 (2006).

    Article  CAS  Google Scholar 

  29. Um, S. H. et al. Enzyme-catalysed assembly of DNA hydrogel. Nature Mater. 5, 797–801 (2006).

    Article  CAS  Google Scholar 

  30. Cheng, W., Park, N., Walter, M. T., Hartman, M. R. & Luo, D. Nanopatterning self-assembled nanoparticle superlattices by molding microdroplets. Nature Nanotech. 3, 682–690 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the US Department of Agriculture (USDA) National Research Initiatives (NRI) and the US National Science Foundation (NSF) CAREER award and performed in part at the Nanobiotechnology Center and Cornell Center for Material Research, which are supported by the NSF, Cornell University and industrial affiliates. We thank E. J. Rice, J. C. March, J. S. Kahn, S. Tan and M. Campolongo for proofreading this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

J.B.L., Y.H.R. and D.L. conceived and designed the experiments. J.B.L., Y.H.R. and H.F. performed the experiments. J.B.L., Y.H.R., H.F. and D.L. analysed the data. J.B.L., Y.H.R., S.H.U., W.C., P.K., J.J.C. and D.A.M. contributed materials and analysis tools. J.B.L., Y.H.R. and D.L. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Dan Luo.

Supplementary information

Supplementary information

Supplementary information (PDF 1392 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Roh, Y., Um, S. et al. Multifunctional nanoarchitectures from DNA-based ABC monomers. Nature Nanotech 4, 430–436 (2009). https://doi.org/10.1038/nnano.2009.93

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nnano.2009.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing