Abstract
Spin–orbit coupling in semiconductors relates the spin of an electron to its momentum, and provides a pathway for electrically initializing and manipulating electron spins for applications in spintronics1 and spin-based quantum information processing2. This coupling can be regulated with quantum confinement in semiconductor heterostructures through band-structure engineering. Here we investigate the spin Hall effect3,4 and current-induced spin polarization5,6 in a two-dimensional electron gas confined in (110) AlGaAs quantum wells using Kerr rotation microscopy. In contrast to previous measurements7,8,9,10, the spin Hall profile shows complex structure and the current-induced spin polarization is out-of-plane. The experiments map the strong dependence of the current-induced spin polarization to the crystal axis along which the electric field is applied, reflecting the anisotropy of the spin–orbit interaction. These results reveal opportunities for tuning a spin source using quantum confinement and device engineering in non-magnetic materials.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout


.


Similar content being viewed by others
References
Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).
Awschalom, D. D., Loss, D. & Samarth, N. (eds) Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).
D’yakonov, M. I. & Perel’, V. I. Possibility of orienting electron spins with current. JETP Lett. 13, 467–469 (1971).
Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).
Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).
Aronov, A. G. & Lyanda-Geller, Y. B. Nuclear electric resonance and orientation of carrier spins by an electric field. JETP Lett. 50, 431–434 (1989).
Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).
Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).
Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).
Silov, A. Yu. et al. Current-induced spin polarization at a single heterojunction. Appl. Phys. Lett. 85, 5929–5931 (2004).
Murakami, S., Nagaosa, N. & Zhang, S. C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).
Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).
Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).
Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984).
Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Coherent spin manipulation without magnetic fields in strained semiconductors. Nature 427, 50–53 (2004).
Bernevig, B. A. & Zhang, S. C. Spin splitting and spin current in strained bulk semiconductors. cond-mat/0412550 (2004).
D’yakonov, M. I. & Kachorovskii, V. Yu. Spin relaxation of two-dimensional electrons in noncentrosymmetric semiconductors. Sov. Phys. Semicond. 20, 110–112 (1986).
Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).
Stephens, J. et al. Spatial imaging of magnetically patterned nuclear spins in GaAs. Phys. Rev. B 68, 041307 (2003).
Stephens, J. et al. Spin accumulation in forward-biased MnAs/GaAs Schottky diodes. Phys. Rev. Lett. 93, 097602 (2004).
Winkler, R. Spin orientation and spin precession in inversion-asymmetric quasi-two-dimensional electron systems. Phys. Rev. B 69, 045317 (2004).
Kalevich, V. K. & Korenev, V. L. Effect of electric field on the optical orientation of 2D-electrons. JETP Lett. 52, 230–235 (1990).
Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Electrical initialization and manipulation of electron spins in an L-shaped strained n-InGaAs channel. Appl. Phys. Lett. 87, 022503 (2005).
Schliemann, J. & Loss, D. Dissipation effects in spin-Hall transport of electrons and holes. Phys. Rev. B 69, 165315 (2004).
Pfeiffer, L. et al. Formation of a high quality two-dimensional electron gas on cleaved GaAs. Appl. Phys. Lett. 56, 1697–1699 (1990).
Crooker, S. A., Awschalom, D. D., Baumberg, J. J., Flack, F. & Samarth, N. Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells. Phys. Rev. B 56, 7574–7588 (1997).
Ohno, Y., Terauchi, R., Adachi, T., Matsukura, F. & Ohno, H. Spin relaxation in GaAs(110) quantum wells. Phys. Rev. Lett. 83, 4196–4199 (1999).
Sih, V. et al. Control of electron-spin coherence using Landau level quantization in a two-dimensional electron gas. Phys. Rev. B 70, 161313 (2004).
D’yakonov, M. I. & Perel’, V. I. Spin orientation of electrons associated with interband absorption of light in semiconductors. Sov. Phys. JETP 33, 1053–1059 (1971).
Acknowledgements
We acknowledge support from ARO, DARPA, NSF and ONR.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Rights and permissions
About this article
Cite this article
Sih, V., Myers, R., Kato, Y. et al. Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nature Phys 1, 31–35 (2005). https://doi.org/10.1038/nphys009
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys009
This article is cited by
-
Helicity dependent photoresistance measurement vs. beam-shift thermal gradient
Nature Communications (2022)
-
Spin-momentum locked spin manipulation in a two-dimensional Rashba system
Scientific Reports (2019)
-
Current-Induced Spin Polarization in Nonmagnetic Semiconductors
Journal of Superconductivity and Novel Magnetism (2019)
-
Tunable optical spin Hall effect in a liquid crystal microcavity
Light: Science & Applications (2018)
-
Direct visualization of current-induced spin accumulation in topological insulators
Nature Communications (2018)


