Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases

Abstract

Spin–orbit coupling in semiconductors relates the spin of an electron to its momentum, and provides a pathway for electrically initializing and manipulating electron spins for applications in spintronics1 and spin-based quantum information processing2. This coupling can be regulated with quantum confinement in semiconductor heterostructures through band-structure engineering. Here we investigate the spin Hall effect3,4 and current-induced spin polarization5,6 in a two-dimensional electron gas confined in (110) AlGaAs quantum wells using Kerr rotation microscopy. In contrast to previous measurements7,8,9,10, the spin Hall profile shows complex structure and the current-induced spin polarization is out-of-plane. The experiments map the strong dependence of the current-induced spin polarization to the crystal axis along which the electric field is applied, reflecting the anisotropy of the spin–orbit interaction. These results reveal opportunities for tuning a spin source using quantum confinement and device engineering in non-magnetic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The spin Hall effect in a 2DEG.
Figure 2: Current-induced spin polarization in a 2DEG.
Figure 3: Spin polarization near the edges of a channel oriented along .
Figure 4: Voltage dependence of the electrically induced spin polarization.
Figure 5: Measurement of the Bychkov–Rashba spin splitting.

Similar content being viewed by others

References

  1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  ADS  Google Scholar 

  2. Awschalom, D. D., Loss, D. & Samarth, N. (eds) Semiconductor Spintronics and Quantum Computation (Springer, Berlin, 2002).

  3. D’yakonov, M. I. & Perel’, V. I. Possibility of orienting electron spins with current. JETP Lett. 13, 467–469 (1971).

    ADS  Google Scholar 

  4. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  ADS  Google Scholar 

  5. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  ADS  Google Scholar 

  6. Aronov, A. G. & Lyanda-Geller, Y. B. Nuclear electric resonance and orientation of carrier spins by an electric field. JETP Lett. 50, 431–434 (1989).

    ADS  Google Scholar 

  7. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  ADS  Google Scholar 

  8. Wunderlich, J., Kaestner, B., Sinova, J. & Jungwirth, T. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Phys. Rev. Lett. 94, 047204 (2005).

    Article  ADS  Google Scholar 

  9. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 176601 (2004).

    Article  ADS  Google Scholar 

  10. Silov, A. Yu. et al. Current-induced spin polarization at a single heterojunction. Appl. Phys. Lett. 85, 5929–5931 (2004).

    Article  ADS  Google Scholar 

  11. Murakami, S., Nagaosa, N. & Zhang, S. C. Dissipationless quantum spin current at room temperature. Science 301, 1348–1351 (2003).

    Article  ADS  Google Scholar 

  12. Sinova, J. et al. Universal intrinsic spin Hall effect. Phys. Rev. Lett. 92, 126603 (2004).

    Article  ADS  Google Scholar 

  13. Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    Article  ADS  Google Scholar 

  14. Bychkov, Y. A. & Rashba, E. I. Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984).

    Article  ADS  Google Scholar 

  15. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Coherent spin manipulation without magnetic fields in strained semiconductors. Nature 427, 50–53 (2004).

    Article  ADS  Google Scholar 

  16. Bernevig, B. A. & Zhang, S. C. Spin splitting and spin current in strained bulk semiconductors. cond-mat/0412550 (2004).

  17. D’yakonov, M. I. & Kachorovskii, V. Yu. Spin relaxation of two-dimensional electrons in noncentrosymmetric semiconductors. Sov. Phys. Semicond. 20, 110–112 (1986).

    Google Scholar 

  18. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin-orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48As heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    Article  ADS  Google Scholar 

  19. Stephens, J. et al. Spatial imaging of magnetically patterned nuclear spins in GaAs. Phys. Rev. B 68, 041307 (2003).

    Article  ADS  Google Scholar 

  20. Stephens, J. et al. Spin accumulation in forward-biased MnAs/GaAs Schottky diodes. Phys. Rev. Lett. 93, 097602 (2004).

    Article  ADS  Google Scholar 

  21. Winkler, R. Spin orientation and spin precession in inversion-asymmetric quasi-two-dimensional electron systems. Phys. Rev. B 69, 045317 (2004).

    Article  ADS  Google Scholar 

  22. Kalevich, V. K. & Korenev, V. L. Effect of electric field on the optical orientation of 2D-electrons. JETP Lett. 52, 230–235 (1990).

    ADS  Google Scholar 

  23. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Electrical initialization and manipulation of electron spins in an L-shaped strained n-InGaAs channel. Appl. Phys. Lett. 87, 022503 (2005).

    Article  ADS  Google Scholar 

  24. Schliemann, J. & Loss, D. Dissipation effects in spin-Hall transport of electrons and holes. Phys. Rev. B 69, 165315 (2004).

    Article  ADS  Google Scholar 

  25. Pfeiffer, L. et al. Formation of a high quality two-dimensional electron gas on cleaved GaAs. Appl. Phys. Lett. 56, 1697–1699 (1990).

    Article  ADS  Google Scholar 

  26. Crooker, S. A., Awschalom, D. D., Baumberg, J. J., Flack, F. & Samarth, N. Optical spin resonance and transverse spin relaxation in magnetic semiconductor quantum wells. Phys. Rev. B 56, 7574–7588 (1997).

    Article  ADS  Google Scholar 

  27. Ohno, Y., Terauchi, R., Adachi, T., Matsukura, F. & Ohno, H. Spin relaxation in GaAs(110) quantum wells. Phys. Rev. Lett. 83, 4196–4199 (1999).

    Article  ADS  Google Scholar 

  28. Sih, V. et al. Control of electron-spin coherence using Landau level quantization in a two-dimensional electron gas. Phys. Rev. B 70, 161313 (2004).

    Article  ADS  Google Scholar 

  29. D’yakonov, M. I. & Perel’, V. I. Spin orientation of electrons associated with interband absorption of light in semiconductors. Sov. Phys. JETP 33, 1053–1059 (1971).

    ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from ARO, DARPA, NSF and ONR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Awschalom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sih, V., Myers, R., Kato, Y. et al. Spatial imaging of the spin Hall effect and current-induced polarization in two-dimensional electron gases. Nature Phys 1, 31–35 (2005). https://doi.org/10.1038/nphys009

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys009

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing