Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of Bogoliubov excitations in exciton-polariton condensates

Abstract

Einstein’s 1925 paper predicted the occurrence of Bose–Einstein condensation (BEC) in an ideal gas of non-interacting bosonic particles1. However, particle–particle interaction and peculiar excitation spectra are keys for understanding BEC and superfluidity physics. A quantum field-theoretical formulation for a weakly interacting Bose condensed system was developed by Bogoliubov in 1947, which predicted the phonon-like excitation spectrum2 in the low-momentum regime. The experimental verification of the Bogoliubov theory on the quantitative level was carried out for atomic BEC3 using the two-photon Bragg scattering technique4. Exciton-polaritons in a semiconductor microcavity, which are elementary excitations created by strong coupling between quantum-well excitons and microcavity photons, were proposed as a new BEC candidate in solid-state systems5. Recent experiments with exciton-polaritons have demonstrated several interesting signatures from the viewpoint of polariton condensation, such as quantum degeneracy at non-equilibrium conditions6,7,8, the polariton-bunching effect at the condensation threshold9, long spatial coherence10,11,12 and quantum degeneracy at equilibrium conditions13. The particle–particle interaction and the Bogoliubov excitation spectrum are at the heart of BEC and superfluidity physics, but have only been studied theoretically for exciton-polaritons14,15. In this letter, we report the first observation of interaction effects on the exciton-polariton condensate and the excitation spectra, which are in quantitative agreement with the Bogoliubov theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An exciton-polariton condensate in a single-mode trap.
Figure 2: Polarization dependency of the excitation spectrum for an untrapped condensate system.
Figure 3: Pump-rate dependency of the excitation spectrum for a trapped condensate system.
Figure 4: Dispersion relation, energy shift in free-particle regime and population distribution in excitation spectrum.

Similar content being viewed by others

References

  1. Einstein, A. Quantentheorie des einatomigen idealen Gases: Zweite Abhandlung. Sitzungber. Preuss. Akad. Wiss. 1, 3–14 (1925).

    MATH  Google Scholar 

  2. Bogoliubov, N. N. On the theory of superfluidity. J. Phys. USSR 11, 23–32 (1947).

    MathSciNet  Google Scholar 

  3. Anderson, M. H. et al. Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269, 198–201 (1995).

    Article  ADS  Google Scholar 

  4. Stamper-Kurn, D. M. et al. Excitation of phonons in a Bose–Einstein condensate by light scattering. Phys. Rev. Lett. 83, 2876–2879 (1999).

    Article  ADS  Google Scholar 

  5. Imamoglu, A., Ram, R. J., Pau, S. & Yamamoto, Y. Nonequilibrium condensates and lasers without inversion: Exciton-polariton lasers. Phys. Rev. A 53, 4250–4253 (1996).

    Article  ADS  Google Scholar 

  6. Dang, L. S. et al. Stimulation of polariton photoluminescence in semiconductor microcavity. Phys. Rev. Lett. 81, 3920–3923 (1998).

    Article  ADS  Google Scholar 

  7. Senellart, P. & Bloch, J. Nonlinear emission of microcavity polaritons in the low density regime. Phys. Rev. Lett. 82, 1233–1236 (1999).

    Article  ADS  Google Scholar 

  8. Savvidis, P. G. et al. Angle-resonant stimulated polariton amplifier. Phys. Rev. Lett. 84, 1547–1550 (2000).

    Article  ADS  Google Scholar 

  9. Deng, H. et al. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    Article  ADS  Google Scholar 

  10. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  11. Balili, R. et al. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  12. Deng, H. et al. Spatial coherence of a polariton condensate. Phys. Rev. Lett. 99, 126403 (2007).

    Article  ADS  Google Scholar 

  13. Deng, H. et al. Quantum degenerate exciton-polaritons in thermal equilibrium. Phys. Rev. Lett. 97, 146402 (2006).

    Article  ADS  Google Scholar 

  14. Sarchi, D. & Savona, V. Spectrum and thermal fluctuations of a microcavity polariton Bose–Einstein condensate. Phys. Rev. B 77, 045304 (2008).

    Article  ADS  Google Scholar 

  15. Shelykh, I. A., Malpuech, G. & Kavokin, A. V. Bogoliubov theory of Bose-condensates of spinor exciton-polaritons. Phys. Status Solidi A 202, 2614–2620 (2005).

    Article  ADS  Google Scholar 

  16. Keeling, J., Marchetti, F. M., Szymanska, M. H. & Littlewood, P. B. Collective coherence in planar semiconductor microcavities. Semicond. Sci. Technol. 22, R1–R26 (2007).

    Article  Google Scholar 

  17. Wyatt, A. F. G. Evidence for a Bose–Einstein condensate in liquid 4He from quantum evaporation. Nature 391, 56–59 (1997).

    Article  ADS  Google Scholar 

  18. Lai, C.W. et al. Coherent zero-state and π-state in an exciton-polariton condensate array. Nature 450, 529–532 (2007).

    Article  ADS  Google Scholar 

  19. Ciuti, C. et al. Role of the exchange of carriers in elastic exciton–exciton scattering in quantum wells. Phys. Rev. B 58, 7926–7933 (1998).

    Article  ADS  Google Scholar 

  20. Rochat, G. et al. Excitonic Bloch equations for a two-dimensional system of interacting excitons. Phys. Rev. B 61, 13856–13862 (2000).

    Article  ADS  Google Scholar 

  21. Schmitt-Rink, S., Chemla, D. S. & Miller, D. A. B. Theory of transient excitonic optical nonlinearities in semiconductor quantum-well structures. Phys. Rev. B 32, 6601–6609 (1985).

    Article  ADS  Google Scholar 

  22. Pitaevskii, L. P. & Stringari, S. Bose–Einstein Condensation (Clarendon, Oxford, 2003).

    MATH  Google Scholar 

  23. Ozeri, R., Katz, N., Steinhauer, J. & Davidson, N. Colloquium: Bulk Bogoliubov excitations in a Bose–Einstein condensate. Rev. Mod. Phys. 77, 187–205 (2005).

    Article  ADS  Google Scholar 

  24. Deng, H. et al. Polariton lasing versus photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003).

    Article  ADS  Google Scholar 

  25. Stenger, J. et al. Bragg spectroscopy of a Bose–Einstein condensate. Phys. Rev. Lett. 82, 4569–4573 (1999).

    Article  ADS  Google Scholar 

  26. Landau, L. D. & Lifshiëtís, E. M. Fluid Mechanics 2nd edn (Pergamon, Oxford, 1987).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the JST/SORST programme and Special Coordination Funds for Promoting Science and Technology in Japan. We thank T. Maruyama for support and S. Sasaki for device fabrication.

Author information

Authors and Affiliations

Authors

Contributions

S.U. carried out the experiments, analysed the data and wrote the paper, L.T. theoretically studied the data, G.R. carried out the experiments and analysed the data, C.W.L. conceived, designed and carried out the experiments, N.K., T.F., M.G., A.L., S.H. and A.F. prepared materials and experimental tools and Y.Y. conceived the project in this paper.

Corresponding authors

Correspondence to S. Utsunomiya or Y. Yamamoto.

Supplementary information

Supplementary Information

Supplementary Information and Supplementary Figures 1—9 (PDF 432 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utsunomiya, S., Tian, L., Roumpos, G. et al. Observation of Bogoliubov excitations in exciton-polariton condensates. Nature Phys 4, 700–705 (2008). https://doi.org/10.1038/nphys1034

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1034

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing