Abstract
The distribution of entangled states between distant parties in an optical network is crucial for the successful implementation of various quantum communication protocols such as quantum cryptography, teleportation and dense coding1,2,3. However, owing to the unavoidable loss in any real optical channel, the distribution of loss-intolerant entangled states is inevitably afflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, a process of extracting a small set of highly entangled states from a large set of less entangled states, can be used4,5,6,7,8,9,10,11,12,13,14. Here we report on the distillation of deterministically prepared light pulses entangled in continuous variables that have undergone non-Gaussian noise. The entangled light pulses15,16,17 are sent through a lossy channel, where the transmission is varying in time similarly to light propagation in the atmosphere. By using linear optical components and global classical communication, the entanglement is probabilistically increased.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
References
Ekert, A. K. Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991).
Bennettt, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1992).
Bennettt, C. H. & Wiesner, S. J. Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992).
Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).
Kwiat, P. G. et al. Experimental entanglement distillation and hidden non-locality. Nature 409, 1014–1017 (2001).
Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003).
Eisert, J., Scheel, S. & Plenio, M. B. Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett. 89, 137903 (2002).
Fiurášek, J. Gaussian transformations and distillation of entangled Gaussian states. Phys. Rev. Lett. 89, 137904 (2002).
Giedke, G. & Cirac, J. I. Characterization of Gaussian operations and distillation of Gaussian states. Phys. Rev. A 66, 032316 (2002).
Opatrný, T., Kurizki, G. & Welsch, D. G. Improvement on teleportation of continuous variables by photon subtraction via conditional measurement. Phys. Rev. A 61, 032302 (2000).
Duan, L.-M., Giedke, G., Cirac, J. I. & Zoller, P. Entanglement purification of Gaussian continuous variable quantum states. Phys. Rev. Lett. 84, 4002–4005 (2000).
Browne, D. E. & Eisert, et al. Driving non-Gaussian to Gaussian states with linear optics. Phys. Rev. A 67, 062320 (2003).
Fiurášek, J., Mišta, L. Jr. & Filip, R. Entanglement concentration of continuous-variable quantum states. Phys. Rev. A 67, 022304 (2003).
Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R. & Grangier, P. Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007).
Fiorentino, M. et al. Soliton squeezing in a Mach–Zehnder fiber interferometer. Phys. Rev. A 64, 031801 (2001).
Dong, R.-F. et al. An efficient source of continuous variable polarisation entanglement. New J. Phys. 9, 410 (2007).
Dong, R.-F. et al. Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers. Opt. Lett. 33, 116–118 (2008).
Ursin, R. et al. Entanglement-based quantum communication over 144 km. Nature Phys. 3, 481–486 (2007).
Majumdar, A. K. & Ricklin, J. C. Free-Space Laser Communications (Springer, 2008).
Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).
Laurat, J. et al. Conditional preparation of a quantum state in the continuous variable regime: Generation of a sub-poissonian state from twin beams. Phys. Rev. Lett. 91, 213601 (2003).
Heersink, J. et al. Experimental distillation of squeezing from non-Gaussian quantum states. Phys. Rev. Lett. 96, 253601 (2006).
Franzen, A., Hage, B., DiGuglielmo, J., Fiurášek, J. & Schnabel, R. Experimental demonstration of continuous variable purification of squeezed states. Phys. Rev. Lett. 97, 150505 (2006).
Suzuki, S., Takeoka, M., Sasaki, M., Andersen, U. L. & Kannari, F. Practical purification scheme for decohered coherent-state superpositions via partial homodyne detection. Phys. Rev. A 73, 042304 (2006).
Andrew, M. L. et al. Quantum state engineering with continuous-variable post-selection. Phys. Rev. A 73, 041801 (R) (2006).
Fiurášek, J., Marek, P., Filip, R. & Schnabel, R. Experimentally feasible purification of continuous-variable entanglement. Phys. Rev. A 75, 050302 (2007).
Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).
Julsgaard, B. et al. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).
Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).
Adesso, G. & Illuminati, F. Phys. Rev. Lett. 95, 150503 (2005).
Acknowledgements
This work was supported by the EU project COMPAS (No. 212008), the Deutsche Forschungsgesellschaft and the Danish Agency for Science Technology and Innovation (No. 274-07-0509). M.L. and R.F. acknowledge support from the Alexander von Humboldt Foundation and R.F. acknowledges Measurement and Information in Optics (MSM6198959213), LC 06007 of the Czech Ministry of Education and 202/07/J040 of GACR.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dong, R., Lassen, M., Heersink, J. et al. Experimental entanglement distillation of mesoscopic quantum states. Nature Phys 4, 919–923 (2008). https://doi.org/10.1038/nphys1112
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nphys1112
This article is cited by
-
Deterministic bidirectional communication and remote entanglement generation between superconducting qubits
npj Quantum Information (2019)
-
Avoiding disentanglement of multipartite entangled optical beams with a correlated noisy channel
Scientific Reports (2017)
-
Protecting Qutrit Quantum Coherence
International Journal of Theoretical Physics (2017)
-
Optimal Protection of Quantum Coherence in Noisy Environment
International Journal of Theoretical Physics (2017)
-
Protecting Quantum Correlation from Correlated Amplitude Damping Channel
Brazilian Journal of Physics (2017)


