Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Experimental entanglement distillation of mesoscopic quantum states

Abstract

The distribution of entangled states between distant parties in an optical network is crucial for the successful implementation of various quantum communication protocols such as quantum cryptography, teleportation and dense coding1,2,3. However, owing to the unavoidable loss in any real optical channel, the distribution of loss-intolerant entangled states is inevitably afflicted by decoherence, which causes a degradation of the transmitted entanglement. To combat the decoherence, entanglement distillation, a process of extracting a small set of highly entangled states from a large set of less entangled states, can be used4,5,6,7,8,9,10,11,12,13,14. Here we report on the distillation of deterministically prepared light pulses entangled in continuous variables that have undergone non-Gaussian noise. The entangled light pulses15,16,17 are sent through a lossy channel, where the transmission is varying in time similarly to light propagation in the atmosphere. By using linear optical components and global classical communication, the entanglement is probabilistically increased.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagrams of the entanglement distillation protocol and the experimental set-up.
Figure 2: Experimentally measured marginal distributions illustrating the effect of distillation.
Figure 3: Experimental and theoretical results outlining the distillation of an entangled state from a discrete lossy channel.
Figure 4: Experimental and theoretical results outlining the distillation of an entangled state from a semicontinuous lossy channel.

Similar content being viewed by others

References

  1. Ekert, A. K. Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  2. Bennettt, C. H. et al. Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennettt, C. H. & Wiesner, S. J. Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C. H. et al. Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722–725 (1996).

    Article  ADS  Google Scholar 

  5. Kwiat, P. G. et al. Experimental entanglement distillation and hidden non-locality. Nature 409, 1014–1017 (2001).

    Article  ADS  Google Scholar 

  6. Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G & Zeilinger, A. Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003).

    Article  ADS  Google Scholar 

  7. Eisert, J., Scheel, S. & Plenio, M. B. Distilling Gaussian states with Gaussian operations is impossible. Phys. Rev. Lett. 89, 137903 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  8. Fiurášek, J. Gaussian transformations and distillation of entangled Gaussian states. Phys. Rev. Lett. 89, 137904 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  9. Giedke, G. & Cirac, J. I. Characterization of Gaussian operations and distillation of Gaussian states. Phys. Rev. A 66, 032316 (2002).

    Article  ADS  Google Scholar 

  10. Opatrný, T., Kurizki, G. & Welsch, D. G. Improvement on teleportation of continuous variables by photon subtraction via conditional measurement. Phys. Rev. A 61, 032302 (2000).

    Article  ADS  Google Scholar 

  11. Duan, L.-M., Giedke, G., Cirac, J. I. & Zoller, P. Entanglement purification of Gaussian continuous variable quantum states. Phys. Rev. Lett. 84, 4002–4005 (2000).

    Article  ADS  Google Scholar 

  12. Browne, D. E. & Eisert, et al. Driving non-Gaussian to Gaussian states with linear optics. Phys. Rev. A 67, 062320 (2003).

    Article  ADS  Google Scholar 

  13. Fiurášek, J., Mišta, L. Jr. & Filip, R. Entanglement concentration of continuous-variable quantum states. Phys. Rev. A 67, 022304 (2003).

    Article  ADS  Google Scholar 

  14. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R. & Grangier, P. Increasing entanglement between Gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007).

    Article  ADS  Google Scholar 

  15. Fiorentino, M. et al. Soliton squeezing in a Mach–Zehnder fiber interferometer. Phys. Rev. A 64, 031801 (2001).

    Article  ADS  Google Scholar 

  16. Dong, R.-F. et al. An efficient source of continuous variable polarisation entanglement. New J. Phys. 9, 410 (2007).

    Article  ADS  Google Scholar 

  17. Dong, R.-F. et al. Experimental evidence for Raman-induced limits to efficient squeezing in optical fibers. Opt. Lett. 33, 116–118 (2008).

    Article  ADS  Google Scholar 

  18. Ursin, R. et al. Entanglement-based quantum communication over 144 km. Nature Phys. 3, 481–486 (2007).

    Article  ADS  Google Scholar 

  19. Majumdar, A. K. & Ricklin, J. C. Free-Space Laser Communications (Springer, 2008).

    Book  Google Scholar 

  20. Vidal, G. & Werner, R. F. Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002).

    Article  ADS  Google Scholar 

  21. Laurat, J. et al. Conditional preparation of a quantum state in the continuous variable regime: Generation of a sub-poissonian state from twin beams. Phys. Rev. Lett. 91, 213601 (2003).

    Article  ADS  Google Scholar 

  22. Heersink, J. et al. Experimental distillation of squeezing from non-Gaussian quantum states. Phys. Rev. Lett. 96, 253601 (2006).

    Article  ADS  Google Scholar 

  23. Franzen, A., Hage, B., DiGuglielmo, J., Fiurášek, J. & Schnabel, R. Experimental demonstration of continuous variable purification of squeezed states. Phys. Rev. Lett. 97, 150505 (2006).

    Article  ADS  Google Scholar 

  24. Suzuki, S., Takeoka, M., Sasaki, M., Andersen, U. L. & Kannari, F. Practical purification scheme for decohered coherent-state superpositions via partial homodyne detection. Phys. Rev. A 73, 042304 (2006).

    Article  ADS  Google Scholar 

  25. Andrew, M. L. et al. Quantum state engineering with continuous-variable post-selection. Phys. Rev. A 73, 041801 (R) (2006).

    Article  ADS  Google Scholar 

  26. Fiurášek, J., Marek, P., Filip, R. & Schnabel, R. Experimentally feasible purification of continuous-variable entanglement. Phys. Rev. A 75, 050302 (2007).

    Article  ADS  Google Scholar 

  27. Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    Article  ADS  Google Scholar 

  28. Julsgaard, B. et al. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

    Article  ADS  Google Scholar 

  29. Furusawa, A. et al. Unconditional quantum teleportation. Science 282, 706–709 (1998).

    Article  ADS  Google Scholar 

  30. Adesso, G. & Illuminati, F. Phys. Rev. Lett. 95, 150503 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the EU project COMPAS (No. 212008), the Deutsche Forschungsgesellschaft and the Danish Agency for Science Technology and Innovation (No. 274-07-0509). M.L. and R.F. acknowledge support from the Alexander von Humboldt Foundation and R.F. acknowledges Measurement and Information in Optics (MSM6198959213), LC 06007 of the Czech Ministry of Education and 202/07/J040 of GACR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrik L. Andersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, R., Lassen, M., Heersink, J. et al. Experimental entanglement distillation of mesoscopic quantum states. Nature Phys 4, 919–923 (2008). https://doi.org/10.1038/nphys1112

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nphys1112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing